ЛЕКЦИЯ 3. абиотические факторы среды и их влияние на живые организмы
Анализ состояния экосистем, который является обязательным элементом всякого современного экологического исследования, требует рассмотрения экологических факторов. Однако не все они одинаково важны, кроме того, они также различаются и по интенсивности воздействия на экосистему. Так, в наземных экосистемах наиболее существенными считают интенсивность солнечной радиации, температуру и влажность воздуха, количество атмосферных осадков, скорость ветра.
Следует подчеркнуть, что выполнение любых экологических работ в современных условиях, например, экологической экспертизы и оценки риска, требует, наряду с анализом воздействия антропогенных факторов, и анализа различных природных экологических факторов. Рассмотрим более подробно некоторые лимитирующие физические факторы.
Свет. Свет, с одной стороны, служит для организмов первичным источником энергии, без которого невозможна жизнь. С другой стороны, прямое воздействие света на клетку смертельно для организмов. Эволюция биосферы в целом была направлены на «укрощение» поступающего солнечного излучения, использование его полезных составляющих и защиту от вредных. Следовательно, свет – это не только жизненно важный, но и лимитирующий фактор, как на минимальном, так и максимальном уровнях.
Солнечный свет представляет собой электромагнитное излучение с различными длинами волн от 0,05 до 3000 нм (1 нм = 1×10-9 м) и более. Этот поток можно разделить на несколько областей, различающихся физическими свойствами и экологическим значением для различных групп организмов. Границы этих областей приближенно можно представить следующим образом:
• <150 нм - зона ионизирующей радиации,
• 150 - 400 (390) нм - ультрафиолетовая (УФ) радиация,
• 400 (390) - 800 (760) нм - видимый свет (границы диапазона различаются для разных организмов),
• 800 (760) - 1000 нм - инфракрасная (ИК) радиация,
• >1000 нм - зона т.н. дальней ИК - радиации - мощного фактора теплового режима среды.
Жесткий ультрафиолет с длиной волны менее 290 нм губительный для живых клеток, до поверхности Земли не доходит, так как отражается озоновым экраном. Мягкий ультрафиолет с длиной волны от 290 до 390 нм несет много энергии и вызывает образование витамина D в коже человека, он же воспринимается органами зрения многих насекомых; эти лучи в умеренных дозах стимулируют рост и размножение клеток, повышают содержание витаминов, увеличивают устойчивость к болезням. Видимый свет с длиной волны от 390 до 760 нм используется для фотосинтеза фототрофными организмами (растениями, фотосинтезирующими бактериями, сине-зелеными) и животными для ориентации. Инфракрасная часть солнечного спектра (тепловые лучи) с длиной волны более 750 нм вызывает нагревание предметов, особенно важна эта часть спектра для животных с непостоянной температурой тела - пойкилотермных.
На биосферу из космоса падает солнечный свет с энергией 2 кал. на 1см2 в 1 мин. Эта так называемая солнечная постоянная. Этот свет, проходя через атмосферу, ослабляется и до поверхности Земли в ясный полдень может дойти не более 67% его энергии. Проходя через облачный покров, воду и растительность, солнечный свет еще больше ослабляется, и в нем значительно изменяется распределение энергии по разным участкам спектра.
Лучистая энергия, достигающая земной поверхности в ясный день, состоит примерно на 10% из ультрафиолетового излучения, на 45%— из видимого света, на 45% — из инфракрасного излучения. Меньше всего при прохождении через облака и воду ослабляется видимый свет. Следовательно, фотосинтез может идти и в пасмурные день, и под слоем чистой воды некоторой толщины. Свет необходим всем живым организмам. Но, некоторые организмы могут развиваться в полной темноте. Например, многие грибы и бактерии.
Особое значение в жизни всех организмов имеет видимый свет. С участием света у растений и животных протекают важнейшие процессы: фотосинтез, транспирация, фотопериодизм, движение, зрение и т.д. На свету происходит образование хлорофилла и осуществляется процесс фотосинтеза, т.е. синтез органических веществ из неорганических. Фотосинтезирующая деятельность зеленых растений обеспечивает планету органическим веществом. Все организмы зависят в питании от земных фотосинтезирующих растений. Растения для фотосинтеза используют, в основном, синие и красные лучи. По отношению к свету их принято делить на светолюбивые (растения степей), теневыносливые (большинство лесообразующих пород) и теневые (мхи, папоротники).
Движение Земли вокруг Солнца вызывает закономерные изменения длины дня и ночи по сезонам года. Сезонная ритмичность в жизнедеятельности организмов определяется, в первую очередь, сокращением световой части суток осенью и увеличением весной. Продолжительность светового дня является важным регулирующим фактором в жизни живых организмов. Сезонные изменения физиологической активности живых организмов в ответ на изменение продолжительности дня и ночи называют фотопериодизмом.
Длина светового дня, в отличие от других абиотических факторов, для каждой местности изменяется строго закономерно (известно, что самый короткий день 22 декабря, а самый длинный - 22 июня, известна продолжительность любого дня года). В результате естественного отбора выживали организмы, чьи физиологические функции регулировались продолжительностью светового дня. Если продолжительность светового дня искусственно поддерживать более 15 часов, наши листопадные деревья становятся вечнозелеными, а если весной с помощью ширмы устроить им осенний день (меньше 12 часов), их рост прекращается, они сбрасывают листву и у них наступает состояние зимнего покоя.
Приспособленность к сезонному изменению продолжительности светового дня привела к появлению длиннодневных и короткодневных растений. Длиннодневные зацветают в начале лета, до осени успевают созреть плоды и семена - это растения средней полосы и северных зон (z.B. наши злаки - рожь, пшеница, овес), короткодневные (астры, георгины, хризантемы) - растения южного происхождения, где продолжительность светового дня около 12 часов, поэтому они у нас зацветают при коротком дне осенью.
Уменьшение светового дня в конце лета ведет к прекращению роста, стимулирует отложение запасных питательных веществ организмом, вызывает у животных осенью линьку, определяет сроки группирования в стаи, миграции, переход в состояние покоя и спячки. Увеличение длины светового дня стимулирует половую функцию у птиц, млекопитающих, определяет сроки цветения растений.
Температура. Тепловой режим – важнейшее условие существования всех живых организмов, так как все физиологические процессы в них возможны при определенных условиях. Главным источником тепла является солнечное излучение. Сила и характер солнечного излучения зависят от географического положения и являются важными факторами, определяющими климат региона. Климат же определяет наличие и обилие видов животных и растений в данной местности. Диапазон существующих во Вселенной температур равен тысячам градусов.
По сравнению с ними пределы, в которых может существовать жизнь, очень узки - около 300 0С, от -200 0С до +100 0С. На самом деле большинство видов и большая часть активных физиологических процессов приурочены к более узкому диапазону температур.
Как правило, это температуры, при которых возможно нормальное строение и функционирование белков, - от 0 0С до +50 -0С. Однако существуют организмы, обладающие специализированными ферментными системами, что обеспечивает им возможность активного существования при температуре тела, выходящей за указанные пределы.
Значение температуры заключается в том, что она изменяет скорость протекания биохимических процессов в клетках, и это отражается на жизнедеятельности организма в целом.
По отношению к температуре как к экологическому фактору все организмы подразделяются на две группы: холодолюбивые и теплолюбивые.
Холодолюбивые организмы, или криофилы, способны жить в условиях относительно низких температур и не выносят высоких. Так, древесные и кустарниковые породы Якутии не вымерзают при -700С, в Антарктиде при такой же температуре обитают лишайники, ногохвостки, пингвины.
У теплолюбивых, или термофилов, жизнедеятельность приурочена к условиям довольно высоких температур. Это преимущественно обитатели жарких тропических районов Земли. Они не переносят низких температур и нередко гибнут уже при 0 0С, хотя физического замораживания их тканей и не происходит. Причиной их гибели, как правило, является нарушение обмена веществ, приводящее к образованию в растениях несвойственных им продуктов, в том числе и вредных, вызывающих отравление.
Многие организмы обладают способностью переносить очень высокие температуры. Например, пресмыкающиеся, некоторые виды жуков и бабочек выдерживают температуру до 45-50 0С. В горячих источниках Калифорнии при температуре 52 0С обитает рыба – пятнистый ципринодон, в одах горячих ключей на Камчатке постоянно живут сине-зеленые водоросли при температуре 75-80 0С.
Температурный оптимум для большинства живых организмов находится в пределах 20-25 0С, и лишь у обитателей жарких сухих районов температурный оптимум жизнедеятельности находится выше 25-28 0С.
Изменчивость температуры является мощным экологическим фактором среды. Живые организмы приспосабливаются к различным температурным условиям; одни могут жить при постоянной или относительно постоянной температуре, другие лучше адаптированы к колебаниям температуры.
Беспозвоночные, рыбы, амфибии и рептилии лишены способности поддерживать температуру тела в узких границах. Их называют пойкилотермными. Данных животных часто называют также эктотермными, так как они больше зависят от тепла поступающего извне, чем от того тепла, которое образуется в обменных процессах. Для них характерны низкая интенсивность обмена и отсутствие механизмов сохранения тепла.