Смекни!
smekni.com

Анализ влияния ЗАО "Челны Хлеб" на атмосферу (стр. 5 из 8)

Выделение примеси из насыщенного абсорбента путем его нагрева или каким-то другим способом (например уменьшением давления) называется десорбцией.

Возможность выделения поглощенного газа из абсорбента путем повышения температуры позволяет использовать один и тот же абсорбент многократно в замкнутом цикле. При этом абсорбент после выделения из него поглощенного газа называется регенерированным абсорбентом. В нем остается очень малое количество поглощенного газа, поэтому регенерированный абсорбент обладает практически такой же поглотительной способностью, как и свежий абсорбент.

Абсорбция представляет собой наиболее распространенный способ очистки газовых потоков. Процесс абсорбции проводится в вертикальных аппаратах — абсорберах, которые наполняются так называемыми насадками, позволяющими создавать развитую поверхность контакта абсорбента с газовым потоком, движущимся в противоположном направлении.

Адсорбционные установки, применяемые в промышленности. Адсорбционные процессы осуществляются в горизонтальных или вертикальных аппаратах-адсорберах, в которых располагается слой адсорбента толщиной не более 0,8 м. Такие адсорберы находят широкое применение при рекуперации летучих растворителей и паров других легколетучих органических веществ.

Цеолиты используются при осушке газовых потоков и для улавливания химически активных газов, таких как диоксид азота. Молекулы вредных газов и паров в порах адсорбента под действием адсорбционных сил конденсируются и переходят в жидкое состояние подобно конденсации паров воды на холодной поверхности. Это приводит к заполнению микропор и насыщению адсорбента. В момент насыщения адсорбент имеет максимальную адсорбционную емкость.

Для активированных углей адсорбционная емкость составляет 12 - 14% от массы адсорбента, для остальных адсорбентов — от 6 до 8%. Это означает, что 100 кг активированного угля способно поглотить 12 - 14 кг вредных паров или газов, тогда как такое же количество других адсорбентов, например, силикагелей, алюмогелей и цеолитов, — не более 6 - 8 кг. После насыщения адсорбента — заполнения пор поглощаемым веществом — его продувают насыщенным водяным паром или горячим воздухом. При этом конденсированное на поверхности пор вещество снова переходит в газообразное состояние и вместе с продувочным паром или воздухом удаляется из адсорбера. Такой процесс называется десорбцией.

Выделение десорбированного газа из смеси с водяным паром происходит в специальных аппаратах-холодильниках, где водяной пар превращается в конденсат. Если при этом происходит также конденсация десорбированного газа или пара органического вещества, не смешивающегося с водой, то их разделяют в сепараторах путем расслаивания.

Мембранные процессы очистки газовых потоков

В последние годы для очистки газовых потоков от примесей начали использовать мембранные процессы.

Мембраны представляют собой тонкие полимерные пленки (толщина несколько десятков мкм), полученные на основе поливинилхлорида, полиэтилена, полиамида и других полимеров. Мембранные процессы основаны на селективном (выборочном) разделении газов, различающихся по величине объема молекул. Такие мембраны имеют поры, соизмеримые с размерами молекул газов, проходящих через мембрану. Газ, который проходит через мембрану, называется фильтратом, а смесь газов, остающаяся над мембраной, называется концентратом.

В отличие от механического фильтрования мембранные процессы зависят от многих физико-химических факторов, таких как интенсивность межмолекулярных взаимодействий между мембраной и молекулами фильтрата, скорость удаления концентрата над мембраной, разность концентраций примесей в концентрате и фильтрате.

В промышленности мембранное разделение газов применяется для очистки газообразного водорода от примесей в производстве аммиака, при очистке газовых потоков от диоксида углерода, сероводорода и диоксида серы.

Перспективы применения мембранного разделения газовых потоков в народном хозяйстве определяются прежде всего простотой аппаратурного оформления процесса, отсутствием реагентов, длительной работой газоразделительных мембран (5-10 лет), экономичностью и возможностью полной автоматизации мембранных установок. (Мухутдинова А.А. , 1998.)


2. Материалы и методы

Проанализировал данные представленные предприятием ЗАО «Челны Хлеб».С целью выполнения работы была произведена статистическая обработка материалов предприятия по выбросам в атмосферу.

Методика расчета ПДВ.

1. Установление ПДВ производится с применением методов расчета загрязнения атмосферы промышленными выбросами и с учетом перспективы развития предприятий, физико-географических и климатических условий местности, расположения промышленных площадок и участков существующей и проектируемой жилой застройки, санаториев, зон отдыха городов, взаимного расположения промышленных площадок и селитебных территорий.

2. ПДВ (г/с) устанавливаются для условий полной нагрузки технологического и газоочистного оборудования и их нормальной работы. ПДВ не должны превышаться в любой 20-и минутный период времени.

3. ПДВ устанавливаются для каждого отдельного источника выброса. Для мелких источников целесообразно установление единых ПДВ от их совокупностей, с предварительным объединением группы источников в более мощный площадной или условный точечный источник. Неорганизованные выбросы всего предприятия или отдельных участков его промплощадки сводятся к площадным источникам или к совокупности условных точечных источников.

4. Наряду с ПДВ для одиночных источников устанавливаются ПДВ для предприятия в целом. При постоянстве выбросов они находятся как сумма ПДВ от одиночных источников и групп мелких источников. При непостоянстве во времени выбросов от отдельных источников ПДВ предприятия соответствует максимально возможному суммарному выбросу от всех источников предприятия при нормальной работе технологического и газоочистного оборудования.

5. ПДВ определяются для каждого вещества отдельно, в том числе и в случаях учета суммации вредного действия нескольких веществ.

6. При установлении ПДВ учитываются фоновые концентрации сф.

7. Значение ПДВ (г/с) для одиночного источника с круглым устьем в случаях сф< ПДК определяется по формуле:

ПДВ = (ПДК - сф) Н2/AFmn 3V1T (1.1)

где:

Н (м) – высота источника выброса над уровнем земли (для наземных источников при расчетах принимается Н=2м);

А – коэффициент, зависящий от температурной стратификации атмосферы;

F - безразмерный коэффициент, учитывающий скорость оседания вредных веществ в атмосферном воздухе;

m и n – коэффициенты, учитывающие условия выхода газо-воздушной смеси из устья источника выброса;

– безразмерный коэффициент, учитывающий влияние рельефа местности (в случае ровной или слабопересеченной местности с перепадом высот, не превышающим 50 м на 1 км, =1);

T (оС) – разность между температурой выбрасываемой газо-воздушной смеси и температурой окружающей среды;

V1 (м3/с) – расход газо-воздушной смеси, определяемый по формуле:

V1 = oD2/4 (1.2)

где: o (м/с) - средняя скорость выхода газо-воздушной смеси из устья источника выброса;

D (м) – диаметр устья источника выброса.

8. При наличии группы из нескольких источников выбросов значения ПДВ (ПДВ1, ПДВ2 , ..... ПДВN) для каждого (i-го) источника находится по формуле: ПДВi=Мi, где Мi (М1, М2, ... МN) – такие значения выбросов от каждого источника, которые приняты при расчетах загрязнения атмосферы от всей совокупности источников и при которых максимальная суммарная концентрация в атмосфере при неблагоприятных метеорологических условиях не превышает ПДК - сф или 0,8 ПДК - сф на территориях, подлежащих особой охране.

9. Наряду с максимальными разовыми ПДВ (г/с) устанавливаются годовые значения ПДВг (т/год) для отдельных источников и предприятия в целом.

ПДВг (т/год) = ПДВ(г/с) * 3,156

10. Для действующих предприятий, если в воздухе городов или других населенных пунктов концентрации вредных веществ превышают ПДК, а значения ПДВ в настоящее время не могут быть достигнуты, то по согласованию с органами Министерства охраны природы и Минздрава предусматривается поэтапное, с указанием длительности каждого этапа, снижение выбросов вредных веществ до значений ПДВ, обеспечивающих достижение ПДК, или до полного предотвращения выбросов. На каждом этапе до обеспечения значений ПДВ устанавливаются временно согласованные выбросы вредных веществ (ВСВ) с учетом значений выбросов предприятий с наилучшей (в части охраны окружающей среды) достигнутой технологией производства, аналогичных по мощности и технологическим процессам. При установлении ВСВ следует пользоваться теми же приемами расчета, что и при установлении ПДВ.


2.3 Методика составления розы ветров

С целью изучения рассеивания выбросов предприятия была составлена карта розы ветров со следующей методикой:

Для представления режима ветра в данном месте (обычно по данным для месяца, сезона или года), строят розу ветров. Это диаграмма, которая представляет собой кружок, от центра которого расходятся лучи по основным румбам (направлениям) горизонта. Разделяется окружность на 16 румбов через 22,5' . Главными называют направления на север (С, N), юг (K),S), восток (В,Е), запад (3,W). Названия 12 других являются комбинациями названий главных румбов, например, северо-восток (СВ) и т.д. Внутри круга цифрами указывается повторяемость штилей, а длины лучей пропорциональны повторяемости ветров данного направления. Если штили не учитываются - кружок заменяют точкой. Концы лучей обычно, но не всегда соединяют ломаной линией. Можно принять в расчет скорость ветра и умножить повторяемость каждого направления на среднюю скорость ветров этого направления; тогда произведения будут пропорциональны путям, пройденным воздухом при каждом из направлений ветра; их также можно выразить в процентах общей суммы и построить по ним розу ветров. Можно строить розу ветров специального характера; например, можно откладывать по лучам температуры воздуха, соответствующие данным направления ветра (термическая роза ветров), или количество осадков при ветрах разных направлений и т.д.