Смекни!
smekni.com

Анализ возможностей использования сорбентов при очистке сточных вод (стр. 5 из 6)

В рамках рентгенографического метода существует рентгенофазовый анализ, который в зависимости от решаемых задач подразделяют на качественный и количественный.

Задача качественного рентгенофазового анализа – идентификация природы кристаллических фаз, содержащихся в исследуемом материале. Анализ основан на том, что каждое индивидуальное кристаллическое соединение дает специфическую рентгенограмму с определенным набором линий (дифракционных максимумов) и их интенсивностью. В настоящее время имеются рентгенографические данные о большом числе известных кристаллических соединений, эталонные рентгенограммы которых приводятся в справочной литературе или отдельных публикациях. Сущность качественного рентгенофазового анализа сводится к сопоставлению экспериментально определенных значений межплоскостных расстояний (d,

) и относительных интенсивностей (I) линий в эталонными рентгенограммами. Если на полученной при исследовании образца рентгенограмме присутствуют дифракционные максимумы со значениями d и I, характерными для определяемого соединения, то это значит, что оно присутствует в исследуемом материале. Анализ естественно, облегчается, если известен хотя бы приблизительно химический состав исследуемого материала или предполагаемый минеральный состав. В этом случае круг веществ, рентгенографические характеристики которых необходимо сравнить с полученной рентгенограммой сужается. Идентификация фаз после получения рентгенограммы начинается с нахождения углов q и соответствующих им величин межплоскостных расстояний, а также относительных интенсивностей каждой линии. Интенсивность оценивается качественно или количественно например, по десяти- или стобальной шкале. Полученные данные рекомендуется сводить в таблицу. Для анализа выбирают наиболее интенсивную линию на рентгенограмме исследуемого материала (при наличии нескольких таких линий с одинаковой интенсивностью берут линию с наименьшей величиной (d,
) . По справочным эталонным рентгенограммам отбирают соединения, имеющие интенсивную линию с аналогичным значением d. Затем выбирают еще 2-3 интенсивные линии и в случае их совпадения с одной из эталонных рентгенограмм и сопоставляют все остальные линии. Если все линии эталонной рентгенограммы отвечают определенным линиям рентгенограммы исследуемого материала без существенных противоречий в их относительной интенсивности первое соединение можно считать найденным. Анализ продолжается до тех пор, пока все линии рентгенограммы не будут отнесены к определенным соединениям.

Аппаратурное оформление метода. В методе в основном используются автоматические дифрактометры типа ДРОН.

2.1.2 Рентгенофлуоресцентный метод. Теоретические основы и практика применения

Метод основан на зависимости интенсивности рентгеновской флуоресценции от концентрации элемента в образце. При облучении образца мощным потоком излучения рентгеновской трубки возникает характеристическое флуоресцентное излучение атомов, которое пропорционально их концентрации в образце. Излучение разлагается в спектр при помощи кристалл-анализаторов, далее с помощью детекторов и счетной электроники измеряется его интенсивность. Математическая обработка спектра позволяет проводить количественный и качественный анализ.

Рентгеновская флуоресценция

Когда атомы образца облучаются фотонами с высокой энергией - возбуждающим первичным излучением рентгеновской трубки, это вызывает испускание электронов. Электроны покидают атом. Как следствие, в одной или более электронных орбиталях образуются "дырки" - вакансии, благодаря чему атомы переходят в возбужденное состояние, т.е. становятся нестабильны. Через миллионные доли секунды атомы возвращаются к стабильному состоянию когда вакансии во внутренних орбиталях заполняются электронами из внешних орбиталей. Такой переход сопровождается испусканием энергии в виде вторичного фотона - этот феномен и называется "флуоресценция''. Энергия вторичного фотона находится в диапазоне энергий рентгеновского излучения, которое располагается в спектре электромагнитных колебаний между ультрафиолетом и гамма-излучением.

Различные электронные орбитали обозначаются K, L, M и т.д., где К – орбиталь, ближайшая к ядру. Каждой орбитали электрона в атоме каждого элемента соответствует собственный энергетический уровень. Энергия испускаемого вторичного фотона определяется разницей между энергией начальной и конечной орбиталей, между которыми произошел переход электрона.

Длина волны испускаемого фотона связана с энергией формулой E = E1-E2 = hc/l , где E1 и E2 – энергии орбиталей, между которыми произошел переход электрона, h – постоянная Планка, с - скорость света, l - длина волны испускаемого(вторичного) фотона. Таким образом, длина волны флуоресценции является индивидуальной характеристикой каждого элемента и называется характеристической флуоресценцией. В то же время интенсивность (число фотонов, поступающих за единицу времени) пропорциональна концентрации (количеству атомов) соответствующего элемента. Это дает возможность элементного анализа вещества: определение количества атомов каждого элемента, входящего в состав образца.

Управление анализом и вычисление концентраций

Анализ и обработка результатов измерений проводится в автоматическом режиме. Для этого разработаны методики анализа многих элементов для различных типов веществ. Методики реализованы в виде компьютерных программ. Во время измерения компьютер управляет всеми узлами спектрометра в соответствии с заданной программой анализа. Современный уровень надежности оборудования и устройство автоматической подачи образцов позволяют выполнять анализ непрерывно круглосуточно без участия оператора. По окончании измерений компьютер выполняет расчет концентраций. Результаты анализа передаются электронными средствами связи автоматически по указанным адресам, либо накапливаются в базе данных измерений для дальнейшей обработки.

Для количественного определения концентрации металлов были построены калибровочные кривые на W, Mo, Pb.


Глава 3. Обсуждение результатов

3.1 Изучение сорбционных характеристик полимерно-глинистых сорбентов по отношению к ионам тяжелых металлов в статическом режиме

Изучение сорбционной способности в статических условиях проводили с использованием модельных водных растворов солей металлов свинца, молибдена, вольфрама с концентрацией 1 г/л. Загрузку сорбентов брали из расчета 100 мл модельного раствора на 0,5 г композита. В качестве объектов исследований были выбран композит состава монтмориллонит с метакрилатом гуанидина (ММТ/МАГ) 50:50. Исследования проводили при комнатной температуре.

Измерения массовой концентрации металлов в пробах воды до и после обработки композитами проводили рентгенофлюресцентным анализом на автоматизированном дифрактометре ДРОН-6 в центре коллективного пользования КБГУ «Рентгеновская диагностика материалов».

3.1.1 Исследование сорбционных характеристик сорбентов по отношению к ионам W(VI) и Mo(VI)

В связи с тем, что в Кабардино-Балкарии имеется комбинат по добыче вольфрамомолибденовой руды и завод по гидрометаллургической переработке вольфрамомолибденового сырья более подробно изучена сорбционная способность композитов по отношению к ионам шестивалентного вольфрама и молибдена.

Извлечение ионов W(VI) и Mo(VI) из водного раствора композитами оценивалось следующими параметрами:

концентрацией ионов в исходном растворе и в очищенной водной фазе, мг/л;

степенью извлечения металла, %.

Для поддержания необходимого значения рН использовали соляную, азотную и серную кислоты и гидроксид натрия. Исходную концентрацию вольфрама и молибдена в растворах создавали на уровне 50-60 мг/л.

Результаты изучения сорбции ионов вольфрама и молибдена представлены на рис. 13,14.

Как видно из рисунков, композит обладает высокими сорбционными возможностями по отношению к изученным ионам. В ходе экспериментов нами установлено, что оптимальные условия сорбции для W(VI) – рН ≈ 4,5; для Мо(VI) – рН ≈ 4,8.

Степень извлечения Мо из модельного раствора составила 65 %, вольфрама 70 %.

3.1.2 Исследование сорбционных характеристик сорбентов по отношению к ионам свинца

В настоящее время промышленность всего мира переживает очередной этап преобразований, связанных с ужесточением экологических стандартов – происходит всеобщий отказ от свинца. Германия существенно ограничила его использование с 2000 г., Голландия - с 2002 г., а такие европейские страны, как Дания, Австрия и Швейцария, вообще запретили использование свинца. Эта тенденция станет общей для всех стран ЕС в 2015 г. США и Россия также активно развивают технологии, которые помогут найти альтернативу применению свинца. Большинство ведущих корпораций ставят отказ от свинца в списки первоочередных задач.

И все же глобальный переход на беcсвинцовые технологии - это задача пусть не очень далекого, но все же будущего. Дело в том, что опасность свинца для окружающей среды и здоровья человека парадоксальным образом сочетается с его исключительной значимостью для современной промышленности.