Смекни!
smekni.com

Аппаратура, используемая для очистки атмосферы от промышленных выбросов пыли (стр. 5 из 6)

Кассетные фильтры являются фильтрами тонкой очистки, они рассчитаны на малую начальную запыленность воздуха, примерно до 2 мг/м3. В зависимости от назначения эти фильтры могут иметь различный коэффициент очистки и соответственно разное сопротивление.

Кассетный бумажный фильтр представляет собой металлический каркас, выполненный из уголковой стали и присоединенный к установочной раме. Фильтрующий материал (алигнин) накладывают на металлическую сетку и зажимают упругими гребенчатыми вставками.

Фильтровальная бумага, которую используют для кассетных фильтров, представляет собой сгруппированные и соединенные вместе волокна из целлюлозы, хлопка, асбеста, стекла или силона и т. д. Асбестовые волокна добавляют для улучшения фильтрующих свойств бумаги.

Бумажные фильтры могут состоять из одного или нескольких фильтрующих слоев. Современные кассетные фильтры из стекловолокна представляют собой пакет, две стенки которого выполнены из стальной решетки. Пакет заполняют тонким эластичным стекловолокном. Коэффициент очистки таких фильтров составляет в зависимости от плотности набивки при работе на тонкодисперсной пыли (размер частиц до 10 мк) от 70 до 95 %. Эти фильтры используются в установках искусственного климата и кондиционерах.

Тканевые фильтры. По форме фильтрующей поверхности тканевые фильтры делятся на рукавные и рамочные. В промышленности наиболее распространены рукавные или мешочные фильтры.

Рукавные фильтры имеют круглое или овальное сечение. При работе овальный фильтр становится круглым, при выключении вентилятора он вновь приобретает исходную форму, что облегчает удаление пыли.

Рукавный фильтр состоит из рядя тканевых рукавов, подвешенных в металлической камере. Запыленный газ поступает в нижнюю часть аппарата и проходит через ткань рукавов. На поверхности ткани в ее порах осаждается пыль. По мере увеличения толщины слоя пыли возрастает сопротивление фильтра прохождению газа, а поэтому осевшую на ткани пыль следует периодически удалять.

В качестве фильтрующего материала для тканевых фильтров применяют шерстянку Мелстроя, шерстяную фланель, шерстяную байку, полушерстяную саржу. Хорошими заменителями шерстяных тканей являются красный вельветон, пестротканная фланель, замша, фильтр-прессный холст и др. в силу высокой стоимости шерстяные фильтры применяют сравнительно редко.

Шерстяные ткани позволяют очищать газы с температурой не выше 80 °С, а хлопчатобумажные ткани пригодны для фильтрации газов с еще более низкой температурой (60 – 65 °С).

Очистка ткани от пыли достигается в рукавных фильтрах механическим встряхиванием рукавов автоматическим устройством или механическим встряхиванием рукавов с одновременной обратной продувкой их очищенным газом или воздухом.

Губчатые фильтры. В качестве фильтрующего материала для губчатых фильтров применяют пенополиуретан (полиуретановый поропласт), представляющий собой полимерный материал губчато-сотовой структуры. Товарный пенополиуретан обладает большим аэродинамическим сопротивлением, так как его поры разделены тонкими упругими перегородками. Для использования в воздушных фильтрах этот материал необходимо предварительно обрабатывать раствором щелочи, чтобы разрушить перегородки между порами и тем самым повысить его воздухопроницаемость. От пыли пенополиуретан очищается водой и используется неоднократно [3].

4.1.2 Мокрые пористые фильтры

Волокнистые фильтры. Очистительное устройство из мокрых волокнистых фильтров включает обычно один или несколько фильтрующих элементов, за которыми расположен сепаратор капель. Эти элементы изготавливают из стеклянных и в виде исключения металлических, например, алюминиевых, волокон. Толщина волокон составляет 50 – 250 мк; чаще всего используют волокна толщиной 150 мк. Толщина фильтрующих элементов достигает иногда 200 мк.

Фильтрующие элементы орошаются либо со стороны поступающего загрязненного газа, т.т. прямоточно, либо со стороны выходящего газа – противоточно. При противоточном обрызгивании фильтрующего элемента происходит значительный унос капелек потоком газа. Поэтому в очистительных устройствах с одним фильтрующим элементом необходимо использовать прямоточное орошение, а при нескольких элементах, следующих один за другим, прямоточное орошение рекомендуется применять перед последним фильтрующим элементом.

Линейная скорость движения воздуха через мокрые волокнистые фильтрующие элементы значительно выше, чем через сухие волокнистые фильтры.

Большие скорости воздуха, применяемые при использовании мокрых волокнистых фильтров, очень выгодны, так как они позволяют изготавливать фильтрующие устройства значительно меньших размеров, чем устройства с сухими волокнистыми бумажными фильтрами.

Для орошения фильтрующих элементов применяют систему разбрызгивания воды под небольшим давлением. При этом важно обеспечить полное и наиболее равномерное смачивание водой фильтрующего элемента.

Рис. 17. Самоочищающийся масляный фильтр шторчатого типа

Чтобы предотвратить унос газом капелек разбрызгиваемой воды, за последним элементом помещают сепаратор, в большинстве случаев в форме жалюзийных решеток.

Масляные фильтры. Кассетные фильтры, имеющие в качестве фильтрующего элемента смоченную маслом металлическую сетку, известны очень давно и находят широкое применение. Существует множество различных модификаций фильтров этого типа, отличающихся друг от друга формой и размерами кассеты и ее заполнением. Для смачивания фильтрующих поверхностей применяют различные минеральные и реже растительные масла.

Наряду с кассетными масляными фильтрами широкое распространение у нас и за рубежом получили самоочищающиеся масляные фильтры (рис.17). Фильтрующим элементом самоочищающихся масляных фильтров является, как и в кассетных фильтрах, металлическая сетка, смоченная маслом. Отличительной особенностью этих фильтров является то, что регенерация фильтрующих элементов осуществляется здесь непрерывно в процессе работы фильтра. Эта особенность самоочищающихся фильтров обеспечивает им существенные эксплуатационные преимущества: постоянные сопротивление и коэффициент очистки и значительно большую пылеемкость.

Самоочищающиеся масляные фильтры состоят из непрерывно движущейся фильтрующей панели и масляной ванны. При прохождении через ванну панель отмывается от пыли и, которая постепенно оседает на дно ванны. Для заполнения ванны применяют веретенное, вазелиновое или парфюмерное масло. Эффективность очистки воздуха достигает 90 – 98 %. На рис. 17 показана движущаяся панель фильтра шторчатого типа, который состоит из плотно перекрывающих друг друга металлических звеньев-шторок, подвешенных к двум непрерывным цепям и покрытых маслом. Запыленный воздух, проходя через них, оставляет на их поверхности частицы пыли [3].

4.2 Электрические аэрозольные фильтры

4.2.1 Коронно-разрядные фильтры

Действие коронно-разрядных фильтров основано на использовании коронного разряда. Коронно-разрядные фильтры делятся на две основные группы:

1. однозонные электрофильтры, в которых процесс ионизации газа с помощью коронного разряда и процесс осаждения заряженных частиц осуществляется в одной зоне;

2. двухзонные электрофильтры (рис. 18), в которых зарядка и осаждение частиц разделены: в первой зоне расположена коронирующая, а во второй – осадительная система.

Однозонные электрофильтры в зависимости от формы осадительных электродов подразделяют на трубчатые и пластинчатые. В трубчатых электрофильтрах газ движется в вертикальном направлении. По осям труб располагаются проволочные коронирующие электроды круглого или иного сечения.

В пластинчатых электрофильтрах осадительными электродами являются пластины, расположенные на расстоянии 250 – 300 мм друг от друга. Между осадительными пластинами располагаются проволочные коронирующие электроды.

Двухзонные электрофильтры изготовляют в виде отдельных ячеек, которые монтируют в секции, рассчитанные на определенную производительность. Секции устанавливают в одном корпусе. Запыленный воздух сначала проходит через коронирующую систему, где частицы получают ионный заряд того же знака, что и коронирующие электроды, а затем через осадительную систему [3].

4.2.2 Электретные фильтры

Схематический вариант электретного фильтра приведен на рис. 19. В принципе этот фильтр представляет собой систему плоских или концентрических щелей, образованных электретными поверхностями, несущими заряды чередующейся полярности.

Между поверхностью электрета и ограничивающими его электродами действует сильное электрическое поле. Максимальная величина этого поля может составлять 33 кВ/см, т. е. быть равной пробивной прочности окружающего электрет воздуха при нормальном атмосферном давлении.

После пропускания определенной порции запыленного газа поверхности электрета и электрода очищают от прилипших к ним частичек пыли, так как под действием слоя пыли электрическое поле в зазоре может перестать действовать [3].

4.2.3 Мокрые электрофильтры

Мокрые электрофильтры предназначены для очистки от смолы, масляных туманов и пыли генераторных и коксохимических газов. Они рассчитаны на работу при температуре до 50 °С и давлении до 40 кПа или разрежении до 5 кПа. Аппараты – вертикальные, однопольные, односекционные со стальным корпусом цилиндрической формы. Осадительные электроды трубчатой формы. Электрофильтры изготавливают двух типоразмеров с активным сечением 5 и 7,2 м2.

Электрофильтр ПГ-8 предназначен для очистки от пыли и смолы газов, образующихся при газификации углей; для очистки газов, используемых в газовых турбинах, для синтеза аммиака, спиртов, обогрева коксовых печей и др. Электрофильтр оборудован устройством, через которое продувают пар или газ для удаления взрывоопасных газовых смесей при пуске и остановке [5].