Смекни!
smekni.com

Вимірювальні канали контрольно-вимірювальних систем в екології (стр. 3 из 5)


2 РОЗРОБКА СТРУКТУРНОЇ СХЕМИ АНАЛОГО-ЦИФРОВОГО ПЕРЕТВОРЮВАЧА ПОРОЗРЯДНОГО ЗРІВНОВАЖЕННЯ

Аналого-цифрові перетворювачі порозрядного зрівноваження використовуються у тому разі, якщо необхідно забезпечити похибку 0,1 …0,02% при досить високій швидкодії в межах 104…106 вим./с.

Суть порозрядного зрівноваження полягає в зрiвноваженнi вимірювальної Uа напруги компенсуючою Uк, що змінюються порозрядно нерівномірними ступенями. Відлік результату вимірювання здійснюється в момент рівності цих величин. Такий алгоритм називають ще “старшими розрядами вперед”.
На рисунку 2.1 наведено структурну схему аналого-цифрового перетворювача порозрядного зрiвноваження.

Рисунок 2.1 – Структурна схема аналогово-цифрового перетворювача порозрядного зрівноваження

Основними елементами структурної схеми аналого-цифрового перетворювача порозрядного зрiвноваження є:

- G – генератор тактової частоти

, який задає частоту перемикання тригерів регістра;

- РI – розподiльник iмпульсiв, який задається послідовність перемикання тригерів регістра;

-

- схеми збiгу, якi призначенi для керування процесом вимiрювання;

-

- SR-тригери, якi представляють собою десяти розряднi регiстри;

- ЦАП – цифро-аналоговий перетворювач, який призначений для перетворення двiйкового коду в аналогову величину;

- ПП – пристрiй порiвняння (компаратор), який може знаходитись в двох станах: якщо

, то на виходi компаратора формується рiвень логiчної одиницi i цим рiвнем вiдкриваються всi схеми збiгу
; якщо ж
, то на виходi компаратора формується рiвень логiчного нуля, яким закриваються всi схеми збiгу.

Сутнiсть алгоритму порозрядного зрiвноваження розглянемо на конкретному прикладi. Припустимо, що вимiрювальна напруга складає 900 mB.

Вхідна напруга Uа в пристрої порівняння порівнюється з компенсуючою напругою Uк починаючи з старшого розряду. Отже, для конкретного прикладу, напруга в 512 mВ порівнюється з вимірювальною напругою 900 mВ, і оскільки Uк < Ua, пристрій порівняння виробляє сигнал, на виходi першого тригера встановлюється рiвень логiчної одиницi. Далі розподільник імпульсів встановлює в одиничний стан другий тригер і відбувається порівняння компенсуючої напруги Uк = 2n ∙∆U+2n-1∙∆U, тобто 768 mВ і вимірювальну напругу 900 mВ. Оскільки Uк < Ua на виході другого тригера встановлюється одиниця. В результаті порівняння компенсуюча напруга стає рівною вхідній напрузі, вимірювання закінчується i на виходi аналого-цифрового перетворювача утворюється код 1110000100, який відповідає вимiрювальнiй напрузi 900 mВ. Процес перетворення вхідної напруги Ua=900 в двійковий код наведено в таблицi 2.1.

Таблиця 2.1 Процес перетворення вхідної напруги Ua=1500 в двійковий код

Такт Порівняння Значення компенсуючої напруги Код
1 512 900 512 1
2 768 900 512 + 256 = 768 1
3 896 900 768 + 128 = 896 1
4 960 900 896 + 64 = 960 0
5 928 900 896 + 32 = 928 0
6 912 900 896 + 16 = 912 0
7 904 900 896 + 8 = 904 0
8 900 900 896 + 4 = 900 1
9 902 900 900 + 2 = 902 0
10 903 900 902 + 1 = 903 0

Часова діаграма роботи аналого-цифрового перетворювача порозрядного зрівноваження для конкретного випадку наведена на рисунку 2.2.



Рисунок 2.2 – Часова діаграма аналого-цифрового перетворювача порозрядного зрівноваження.


Розглянемо принцип дiї аналого-цифрового перетворювача порозрядного зрiвноваження.

В вихiдному положеннi усi тригери знаходяться в нульовому положеннi i схеми збiгу закритi, тому на всi цифровi входи цифро-аналогового перетворювача поступає нуль i вiн перетворює цей код в вiдповiдну напругу, тобто компенсуюча напруга дорiвнює нулю (

).

Аналого-цифровий перетворювач здiйснює вимiрювання напруги (для даного випадку

) за десять тактiв.

Перший такт: з генератора G поступає тактова частота

i на першому входi розподiльника iмпульсiв з’являється управляючий сигнал, який поступає на перший тригер i встановлює його в одиницю. Таким чином на його виходi утворюється код 1000000000, який цифро-аналоговий перетворювач перетворює в напругу 512 mB. Оскiльки
, то на входi компаратора формується нуль i ним закриваються всi схеми збiгу
.

Другий такт: на другому входi розподiльника iмпульсiв з’являється управляючий сигнал i другий тригер встановлюється в одиницю. Даний управляючий сигнал поступає також на першу схему збiгу, але оскiльки вона закрита нулем, то iмпульси через неї не проходять. Тодi на виходi другого тригера з’являється код 1100000000, акий перетворюється в вiдповiдну йому напругу 768 mB. Оскiльки

, то на входi компаратора формується нуль і ним закриваються всi схеми збiгу.

Третiй такт: по третьому iмпульсу тiльки на третьому входi розподiльника iмпульсiв з’являється управляючий сигнал, який поступає на вхiд третього тригера i на попередню схему збiгу. Проходячи через цю схему вiн поступає на S-вхiд тригера i встановлює його в одиницю. Тодi на виходi третього тригера з’являється код 1110000000, який перетворюється цифро-аналоговим перетворювачем в напругу 896 mB. Оскiльки

, то на входi компаратора формується нуль i ним закриваються всi схеми збiгу.

Четвертий такт: на четвертому входi розподiльника iмпульсiв з’являється управляючий сигнал i четвертий тригер встановлюється в одиницю. Даний управляючий сигнал поступає також на попередню схему збiгу, але оскiльки вона закрита нулем, то iмпульси через неї не проходять. Тодi на виходi четвертого тригера з’являється код 1111000000, який перетворюється в напругу 960 mB.

Оскiльки

, то на входi компаратора встановлюється рівень логічної одиниці i нею відкриваються всi схеми збiгу.

П’ятий такт: по п’ятому iмпульсу тiльки на п’ятому входi розподiльника iмпульсiв з’являється управляючий сигнал, який поступає на вхiд п’ятого тригера i на попередню схему збiгу. Проходячи через цю схему вiн поступає на R-вхiд тригера i встановлює його в нуль. На виходi п’ятого тригера з’являється код 1110100000, який перетворюється в напругу 928 mB. Оскiльки

, то на входi компаратора встановлюється рівень логічної одиниці i нею відкриваються всi схеми збiгу.

Шостий такт: на шостому входi розподiльника iмпульсiв з’являється управляючий сигнал i тригер встановлюється в одиницю. Проходячи через попередню схему збігу вiн поступає на R-вхiд тригера i встановлює його в нуль. На виходi шостого тригера з’являється код 1110010000, який перетворюєється в напругу 912 mB. Оскiльки

, то на входi компаратора встановлюється рiвень логiчної одиницi, яким вiдкриваються всi схеми збiгу.

Сьомий такт: по сьомому iмпульсу на сьомому входi розподiльника iмпульсiв з’являється управляючий сигнал, який поступає на вхiд тригера i на попередню схему збiгу. Проходячи через цю схему вiн поступає на R-вхiд тригера i встановлює його в нуль. Тодi на виходi сьомого тригера з’являється код 1110001000, який перетворюється в напругу 904 mB. Оскiльки

, то на входi компаратора встановлюється рiвень логiчної одиницi, яким вiдкриваються всi схеми збiгу.

Восьмий такт: утворюється код 1110000100, який вiдповiдає вимiрювальнiй напрузi 900 mB, тобто компенсуюча i вимiрювальна напруга зрiвноважуються.

Загальна часова діаграма роботи аналого-цифрового перетворювача порозрядного зрівноваження наведена на рисунку 2.3 (Додаток Б).

Рiвняння перетворення аналогово-цифрового перетворювача порозрядного зрівноваження має вигляд:

, (4.1)

де h = U0/2n - крок квантування; n - розрядність двійкового лічильника;

U0 - опорна напруга.

Статична характеристика аналого-цифрового перетворювача порозрядного зрівноваження наведена на рисунку 2.4.


Рисунок 2.4 – Статична характеристика аналогово-цифрового перетворювача

Похибка квантування аналогово-цифрового перетворювача порозрядного зрівноваження визначається, як величина обернена до кількості імпульсів