Смекни!
smekni.com

Вопросы экологии применительно к лесному хозяйству (стр. 6 из 10)

Таким образом, сообщество не может одновременно быть высокостабильным и давать большой выход чистой продукции, который можно было бы изъять без вреда для самого биоценоза.

В почвенной биоте столь же активно протекают сукцессионные процессы. Они обусловлены разложением органического вещества и лежат в основе биологических круговоротов, - естественных регуляторов процессов, обеспечивающих плодородие почвы. Загрязнение почвенной среды и нарушение процессов образования гумуса снижают регуляторную способность почв и ведут к подрыву естественного плодородия, а следовательно, и к изменениям в экосистеме. Таким образом, эдафическая компонента может весьма существенно повлиять на ход экологической сукцессии при нарушении ее регуляторной функции.

Полнота сукцессий и видовое разнообразие возможны в случае надежной «работы» круговорота питательных веществ. Только в этом случае можно говорить о стабильности экосистемы, которая достигается в результате преобразования сообщества на основе длительной эволюции видов.

Во избежание экологической катастрофы сельхозугодия и урбанизированные территории (дороги, промышленность, постройки и т. д.) не должны занимать более 1/3 суши, 1/3 должна сохраняться естественно и 1/3 может быть частично изменена хозяйственной деятельностью человека. При этом деятельность должна быть разумной, нельзя, например, снижать полноту ниже 0,67 во избежание возникновения морозобойной ямы из-за неспособности верхнего полога удержать ночью накопившееся за день тепло. Перевод высоковозрастного климаксового леса, где не более 30% территории занято молодняками и средневозрастными, в неустойчивые динамические леса, где самые старые парцеллы не старше 120 лет, высвобождает огромное количество углекислого газа, создающего парниковый эффект в планетарном масштабе со всеми его негативными последствиями. Перечисленного ниже краткого перечня мероприятий достаточно, чтобы понять острейшую необходимость восстановления внешней структуры леса. Возможны следующие мероприятия при недостаточном финансировании:

· отвод площадей по водоразделам под лесозаращивание для соединения отдельных колков леса, с мерами содействия естественному возобновлению;

· переход на котловинные и группово-постепенные рубки в виде окон;

· замена рубок ухода по всей площади на рубки биогруппами;

· оставление резерватов (не менее 10% в квартале) на вырубаемых площадях, размерами 200 x 200 м для сохранения биоразнообразия лесных видов растений и животных;

· выделение особо защитных участков (ОЗУ) – «памятников природы» - на границах распространения ареалов видов, например, лиственницы, пихты, ясеня и т. д., что позволит сохранить генетический фонд и биоразнообразие;

· исключить из расчета главного пользования переходные типы растительности;

· искусственное создание окон путем вырубки для восстановления биоразнообразия мозаично-ярусной структуры в насаждениях всех возрастов. На бедных почвах возможна сплошная вырубка окнами, а на богатых – постепенная – выборочными рубками.

Полным биологическим разнообразием обладает биосфера, которая и является самой стабильной глобальной экосистемой – экосферой. Но биологическое разнообразие, обеспечивающее ее стабильность, - это прежде всего разнообразие стабильных природных экосистем, отличающихся видовым разнообразием естественной биоты.

Вопрос № 38

Математическое моделирование в экологии и в охране окружающей среды.

Системный подход в экологии обусловил формирование целого направления, ставшего ее самостоятельной отраслью – системной экологией. Системный подход – это направление в методологии познания объектов как систем. Система – это множество взаимосвязанных элементов, образующих определенную целостность, единство. Ее состав, структуру и свойства изучают посредством системного анализа, являющегося основой системного подхода и представляющего собой совокупность методологических средств, используемых для решения сложных научных проблем. В эту совокупность средств входит комплекс методов от простых описательных, логических до весьма сложных математических. Технической основой системного анализа являются современные ЭВМ и информационные системы с широким использованием методов математического программирования, теории игр и т.д.

Основными системными принципами являются: целостность, структурность, взаимозависимость системы и среды, иерархичность, множественность описания каждой системы. Целостность – обобщенная характеристика системы, свойства которой несводимы к сумме свойств ее элементов и не выводимы из этих свойств (целостность организмов более полной будет в популяции, популяции – в биоценозе и т. д., и свойства каждой системы не сводимы к свойствам нижестоящих). Структурность – установление структуры и взаимозависимости структурных элементов, обусловленности поведения системы ее структурой (структура биоценоза, трофическая структура экосистемы в установление измеримых связей между трофическими уровнями, и др.). Взаимозависимость системы и среды выражается в формировании и проявлении ее свойств в результате этого взаимодействия (взаимодействие биоценоза и биотопа, популяций в биоценозе и т.п.). Иерархичность – это когда каждый компонент системы может рассматриваться как самостоятельная система, а сама исследуемая система является составной частью более широкой системы (уровни биологической организации, вплоть до глобальной системы – биосферы).

Экосистемы – это весьма сложные самоорганизующиеся и целенаправленные, со сложной иерархической структурой системы, требующие множественного описания каждой системы, что требует построения множества моделей, т. е. широкого использования методов моделирования при исследовании.

Построение обобщенных моделей, отражающих все факторы и взаимосвязи в системе, является центральной процедурой системного анализа. Понятие «модель» широко используется, например, на бытовом уровне: модель самолетов, кораблей, автомобилей и т. п. Если эти модели не действующие, то они отражают только морфологические особенности объекта, но уже знание этих особенностей позволяет человеку, если он раньше не видел оригинал, узнать этот оригинал по модели. Иными словами, лишь часть свойств объекта позволяют судить об объекте в целом, в данном случае – о форме объекта. Нечто похожее происходит и при научных исследованиях.

Традиционная схема научного исследования: исследователь – объект. Здесь исследователь получает информацию путем непосредственного изучения объекта. Например, биолог изучает видовой состав фитопланктона под микроскопом. Но такое возможно лишь на достаточно простых объектах, но не при исследовании целостной структуры экосистемы, взаимодействия ее компонентов и т. п. В этом случае необходимо моделирование, при котором работает схема: исследователь – модель – объект изучения.

Например, чтобы получить представление об энергетических потоках в экосистеме, необходимо представить себе модель в виде пирамиды энергий или хотя бы пирамиды Элтона и т. п. Здесь появляется промежуточный (вспомогательный) объект изучения – модель.

Модель – это вспомогательный объект, находящийся в определенном объективном соответствии с познаваемым оригиналом и способный замещать его на отдельных этапах познания. Моделирование – это разработка, исследование модели и распространение модельной информации на оригинал (Лиепа, 1982 г.). Достоинства моделирования проявляются там, где возможности традиционного подхода оказываются ограниченными. Именно такой областью познания является экология.

Модель должна соответствовать двум требованиям: 1) она должна отражать лишь те особенности оригинала, которые выступают в качестве предмета познания, и 2) она должна быть адекватна оригиналу (иначе представления о нем будут искажены). Сам процесс моделирования, по И. Я. Лиепа (1982 г.), можно разделить на четыре этапа: качественный анализ, математическая реализация, верификация и изучение моделей.

Первый этап моделирования – качественный анализ - является основой любого объектного моделирования. На его основе формируются задачи, и выбирается вид модели. Этот этап обязан обеспечить соответствие модели двум вышеуказанным требованиям. Вид модели выбирается исходя из способа построения, из характера самого объекта и др.

По способу построения все модели делят на два класса: материальные и абстрактные. Материальные модели по своей физической природе сходны с оригиналом. Они могут сохранять геометрическое подобие оригиналу (макеты, тренажеры, искусственные заменители органов и т. д.), подобие протекания физических процессов с оригиналом – физическое моделирование (гидрологическая модель – течение воды и т. п.) и могут быть природными объектами – прообразами оригинала, т. е. натурными моделями (метод пробных участков). Материальные модели используются обычно в технических целях и мало подходят для экологических проблем. Более подходящими для экологического моделирования являются абстрактные модели, представляющие собой описание оригинала в словесной форме или посредством символов и операций над ними, отражающих исследуемые особенности оригинала. Абстрактные модели подразделяются на три типа: вербальные, схематические и математические.