Встановлено, що в межах досліджуваної території відокремлюються всі основні елементи ландшафту. Це соснові ліси, пошкоджені сосновим шовкопрядом, ліси з перевагою вільхи або берези. Інші види листяних лісів виділити не вдалося. Помітно відокремлюються перелоги, добре видно їх ділянки, що заростають сосною та листяними породами дерев. Відносно добре відокремлюються зварники у лісах. За даними досліджень, у межах зварників відбувається інтенсивний процес заростання. Практично не виділились ті види рослинності, які займають невеликі відокремлені ділянки. Це деревостани з перевагою дуба та осики, посадки акації, сади тощо. Серед не пов’язаних з рослинністю елементів ландшафту найчіткіше відокремлюються природні й техногенні об’єкти. Відкрита водна поверхня також добре відрізняється, але місцями відокремлюються невеликі хибні водні поверхні. Не відокремились населені пункти і техоб’єкти.
За даними наземної перевірки, достовірність наведеної класифікації задовільна.
Співставлення результатів класифікації ландшафтів за даними знімків з КА “Океан-О” з результатами аналогічної класифікації ландшафтів за багатозональним знімком високої розрізнювальної здатності з КА “Spot”, зробленого 14.07.98 р. У чотирьох зонах спектру, показало, що на обох знімках чітко відокремлюються основні види рослинності, природні та техногенні елементи ландшафту, просторове розрізнення яких ідентичне.
Однак значно менша розрізнювальна здатність знімка з КА “Океан-О”, неоптимальний час проведення зйомки та менша кількість спектральних каналів обумовили те, що за даним знімком відокремилось менше класів ландшафту, ніж за знімком з КА “Spot”.
На рис. 2.12 наведено класифікацію рослинності зони відчуження, складену за результатами обробки двох знімків, але межі між ними встановити важко, що свідчить про близькість отриманих результатів.
ІІІ. ЕКОЛОГІЯ КОСМОСУ
Проникнення людини в космос – природний і логічний крок (рис. 3.1). Необхідність в цьому обумовлена двома основними причинами: отримання нових підходів і можливостей наукового дослідження і пізнання світу; пошук нових джерел для задоволення енергетичних потреб всього людства на планеті Земля, а отже, і вирішення однієї із глобальних екологічних проблем ресурсозберігання та природокористування.
Рис. 3.1. Робота людини в навколоземному космічному просторі
Перш за все, космічна техніка відкриває можливості по-новому поставити вивчення нашої планети, і в тому числі вирішити екологічні проблеми. Вже перші ШСЗ дозволяли з великою точністю визначити форму Землі, що при використанні наземних засобів потребувало би багаторічної праці. Вимірювання, які були проведені за допомогою супутників, космічних зондів, спрямованих до Місяцю, Венери, Марсу і інших планет Сонячної системи, ніби розсунули межі контактів Землі з світовим простором.
Космічні дослідження нерозривно пов'язані з енергетикою Землі. Сучасна енергетики орієнтована на використання, головним чином, не поновлюваних органічних палив (нафта, газ, вугілля), спалювання яких дає більше 80 % усієї використовуваної енергії.
Вирішення проблем енергетики Землі пов'язують зі створенням так званої “тривимірної” енергетики, сенс якої полягає у виносі до космосу перетворювачів сонячної енергії з наступною передачею енергії на Землю.
Конкретні приклади створення “тривимірної” енергетичної інфраструктури визначають роботу у декількох напрямках: створення космічних електростанцій для енергозабезпечення Землі і забезпечення транспортних операцій в навколоземному космічному просторі (рис. 3.2); освітлення районів Землі за допомогою орбітальних станцій, таких як “Мир”, яка за допомогою пристроїв відбиття освітила частину поверхні Землі на півдні Росії (подібний експеримент проводився і в Україні (див. рис. 3.3); створення космічних ліній передачі енергії на велику відстань; управління тепловим і світловими режимами районів Землі.
Рис. 3.2. Створення космічної електростанції для енергозабезпечення Землі
Сучасний світ неможливо уявити без космонавтики; достатньо зауважити, що супутники забезпечують точність роботи систем всього світу, а космічні системи забезпечують функціонування супутникового телебачення, прогнозують погоду, здійснюють космічний моніторинг Землі.
Рис. 3.3. Експеримент з освітлення районів Землі за допомогою орбітальної станції “Мир” (Росія)
Супутники раннього виявлення ядерних вибухів та інших техногенних катастроф забезпечують інформацією наземні служби спостереження практично в реальному масштабі часу.Але одночасно інтенсивне освоєння космічного простору в мирних (позитивних) цілях використовується також військово-промисловому комплексі (ВПК).
3.1 Ракетно-космічні комплекси
Ракетно-космічний комплекс (РКК) – це сукупність функціонально пов'язаних космічних апаратів (КА) і наземних технічних засобів, призначених для самостійного вирішення поставлених задач у космосі (рис. 3.4).
Рис. 3.4. Технологічні експерименти на орбіті Землі
Ракетно-космічний комплекс включає ракету-носій, космічний апарат, технічний комплекс, стартовий комплекс, засоби вимірювального комплексу космодрому і наземний комплекс керування космічним апаратом.
Космодром – це комплекс соціально підготовлених земельних територій зі спорудами і обладнанням, які забезпечують зборку, підготовку до пуску і пуск ракетно-космічної системи, вимірювання траєкторії її польоту, видачу команд, а також приймання і обробку телеметричної інформації, яка надходить з ракетно-космічної системи. До складу космодрому також входять земельні та водяні ділянки для падіння відпрацьованих ступенів ракет-носіїв і для посадки космічних об'єктів, які повертаються.
В теперішній час більш як 10 країн світу мають свої програми освоєння космосу. З них такі країни спроможні виводити до космосу за допомогою своїх носіїв: Росія, США, Франція, КНР, Великобританія, Індія.
За своєю структурою ракетно-космічні системи частіше за все представляють собою багатоступеневий комплекс, який включає до свого складу декілька ракетних блоків і корисне навантаження, яким може бути космічний корабель, космічна станція, штучний супутник планети, різного роду космічні апарати, включаючи і апарати військового призначення.
Таблиця 3.1
Класифікаціяракет-носіїв
Клас РН | Стартова маса, т | Корисне навантаження, т |
Легкі | до 100 | до 5 |
Середні | до 300 | 5...20 |
Важкі | до 1000 | 20...100 |
Надважкі | Понад 1000 | Понад 100 |
Таблиця 3.2
Загальна характеристика ракет-носіїв
Тип | Стартова маса, т/маса палива, т | Корисне навантаження, т | Кількість ступенів |
Протон | 600/500 | 20 | 3(4) |
Енергія | 2400/1806 | 100 | 2 |
Титан-СЛВ-5 | 630/548 | 20 | 2+2 приск. |
Спейс-Шатл | 2000/1806 | 100 | 2 |
Основною функцією ракети-носія (РН) є надання першої космічної швидкості (7,9 км/с) корисному навантаженню.
Визначають чотири класи РН. У табл. 3.1 - 3.2 наведені прийнята класифікація РН та загальні дані зі стартової маси і корисного навантаження РН, які під час старту здійснюють найбільш потужний вплив на всі шари атмосфери.
3.2 Фактори техногенного впливу космічного польоту на довкілля
В залежності від цілі, поставленої перед космічним апаратом, його можливо скеровувати в різні райони космічного простору. Аналіз цих районів довів, що експлуатація РКТ пов'язана з впливом на природне середовище в масштабах як екосфери Землі (літосфера, атмосфера, гідросфера), так і Сонячної системи.
Експлуатація ракетно-космічних комплексів ставить ряд екологічних проблем, найважливіші з яких є:
шкідливий вплив продуктів згорання ракетних палив на атмосферу Землі;
проблеми знищення озонового шару Землі і електронного компонента атмосфери;
забруднення космічного простору фрагментами ракетно-космічної техніки;
необхідність відчуження значних земельних територій під райони падіння окремих складових ракет-носіїв по трасам їх пусків.
Техногенні фактори, які впливають на навколишнє середовище при експлуатації РКТ, суттєво відрізняються за параметрами факторів від більш розповсюджених видів антропогенних факторів впливу на навколишнє середовище. До таких факторів відносяться:
принциповий характер можливого фізичного механізму впливу на оточуюче середовище;
масштаби можливого впливу (локальні або глобальні);
середовище, на яке здійснює вплив РКТ (суша, вода, атмосфера);
характер впливу (за терміном часу).
Можливість глобального впливу РКТ на природне середовище обумовлюється, по-перше, тим, що траєкторія руху РН при виведенні КА проходить крізь всі шари атмосфери над територіями регіонів, значно віддалених від місця старту, по-друге, тим, що КА і останні ступені ракет, які виведені на орбіту при гальмуванні у верхніх шарах атмосфери, при неповному їх згорянні в атмосфері представляють загрозу для великих територій на поверхні Землі, а ті з них, які можуть тривалий час існувати в навколоземному просторі, забруднюють його після припинення їх активного існування і являють собою загрозу для тих КА, які будуть виводитись в космічний простір.