Підставляючи вираз (3.40) у рівняння (3.39), одержуємо
, (3.41)звідки маємо, що якщо
(3.42)то
= ±1 й, отже, з рівнянь (3.40) одержимо або (3.43)або
(3.44)Ці рівняння є умовами Коші-Рімана й показують, що функції
і є гармонійними функціями. Перетворення, здійснюване такими функціями, переводить нескінченно малі фігури площини хОу в подібні їм фігури площини за умови, що виконується (3.42). Саме такі перетворення й називаються конформними. Отже, якщо перетворення, здійснюване функціями (3.34), є конформним, то рівняння (3.33) прийме видабо
З останньої рівності одержуємо
(3.45)Отримане рівняння також є рівнянням Лапласа, де частки похідні виражаються через нові незалежні змінні ξ і η- координати області D .
Тепер, якщо утворити комплексну функцію, у якої дійсною й уявною частинами є відповідно функції ξ(x,y) і η(x,y), то така комплексна функція ζ=ξ+iη буде аналітичною функцією комплексної змінної z = x+iy, тобто
ζ(z)=ξ(x,y)+iη(x,y) = f(z). (3.46)
Як ми вже відзначали, перетворення, здійснюване аналітичною функцією (3.47), або, що те ж саме, функціями (3.34), називається конформним усюди в області G , де похідна не дорівнює нулю, тобто де виконується умова
(3.47)Таким чином, рівняння Лапласа є інваріантним щодо перетворень, здійснюваних аналітичними функціями комплексного змінного. Якщо ж перетворення (3.34) здійснюється довільними функціями ξ(x,y) і η(x,y), тобто не є конформним, то рівняння Лапласа (3.33) не переходить у рівняння Лапласа (3.45), а переходить у більше загальне рівняння в частинних похідних другого порядку.
Якщо вдається знайти рішення рівняння Лапласа або якого-небудь іншого рівняння математичної фізики в одній з найпростіших, так званих канонічних областей D (коло, напівплощина, прямокутник, смуга й ін.), тобто якщо визначено функцію
як функція координат ξ і η точок області D , то, скориставшись співвідношеннями (3.47) або (3.34), легко знайти шукане рішення , як функцію змінних x й y- координат точок вихідної фізичної області G .При рішенні конкретних фізичних задач функції
й мають певну фізичну інтерпретацію. Фізична постановка задач визначає й крайові умови для шуканих функцій. Метод конформних відображень дозволяє також у ряді випадків, а саме, коли граничні умови як для функції (x,y), так і для сполученої з нею функції ψ(x,y), мають спеціальний фізичний зміст, відшукувати рішення рівняння Лапласа безпосередньо. У цих випадках досить знайти аналітичну функцію, конформно фізичну область, що відображає, G на область D зміни фізичних параметрів (x,y) і ?(x,y) . Вид області D визначається граничними значеннями функцій (x,y) і ψ(x,y).Для завдань плоскої фільтрації, якщо вдається конформно відобразити область фільтрації z на область комплексного потенціалу ω за допомогою деякої аналітичної функції ω = f(z), те розділивши дійсну й уявну частини функції, що відображає, знайдемо комплексний потенціали фільтрації у вигляді
(3.48)де
(x, y) - потенціал швидкості фільтрації, а ψ(x, y) - функція струму.Крім описаної аналітичної функції - комплексного потенціалу фільтрації, у теорії профільної фільтрації розглядаються ще дві аналітичні функції: функція Жуковського G , що визначається рівністю
(3.49)і функція Нумерова, обумовлена рівністю
(3.50)де ε- кількість води, що надходить у ґрунт (ε > 0) або паркої (ε < 0) з одиниці площі горизонтальної проекції вільної поверхні за одиницю часу.
Таким чином, крайове завдання теорії плоскої сталої або фільтрації, що квазиустано-вились, полягає в тім, щоб для заданої області фільтрації Z знайти одну (або дві) з аналітичних функцій (3.48),(3.49),(3.50).
3.4.1. Спосіб Павловського
Спосіб конформного відображення Павловського застосовується у випадку, коли відома границя вихідної області фільтрації G, що будемо позначати також буквою z (тому що область фільтрації розглядається в комплексній площині z=x+ iy). і відома область комплексного потенціалу (ОКП) ω (яка будується в комплексній площині ω=
+iψ). Тоді характеристична функція потоку z = F(ω) або зворотна їй функція - комплексні потенціали швидкості фільтрації ω = f(z) - визначається в результаті конформного відображення області ω на область z . Область комплексного потенціалу ω, як правило, можна побудувати тільки в тому випадку, коли границя області фільтрації z складається з водонепроникних і водопроникних ділянок, тобто границя області фільтрації складається з еквіпотенциальних ліній і ліній струму. У цьому випадку проміжки височування й кривих депресій відсутні (напірна фільтрація). Тому що на еквіпотенциальних лініях = const, а на лініях струму ψ= const, то область комплексного потенціалу ω у розглянутому випадку завжди буде мати вигляд прямокутника або прямолінійного багатокутника, сторони якого паралельні осям координат.Звичайно будують дві функції, що відображають: конформно, що відображає на область фільтрації z нижню (або верхню) так називану допоміжну напівплощину ζ = ξ + iη і конформно відображає на ОКП ω цю же допоміжну напівплощину ζ. У цьому випадку рішення завдання фільтрації, тобто комплексний потенціал швидкості фільтрації (або характеристичну функцію потоку), можна записати в параметричному виді
z = f1(ζ), ω = f2(ζ). (3.51)
Тому що ОКП - прямолінійний прямокутник, то функція ω = f(ζ) знаходиться за допомогою інтеграла Крістофеля-Шварца.
3.4.2. Спосіб Ведерникова-Павловского
У випадку, коли границя області фільтрації z містить криві депресії (так названа безнапірна або вільна фільтрація), положення яких заздалегідь невідомо, конформне відображення області фільтрації z на область ω або напівплощину ζ неможливо, хоча й у цьому випадку, як й у попередньому, область ω цілком визначена й має вигляд прямокутника або прямолінійного багатокутника. У зв'язку з результатами В. В. Ведерникова й Н. Н. Павловського, отриманими незалежно друг від друга, був запропонований спосіб, що усуває труднощі, пов'язані з невизначеністю положення кривої депресії. Скориставшись відомими для функцій
(x, y) і ψ(x,y) граничними умовами на кривої депресії BjCj (3.52)вони замість області змінно z (область фільтрації) запропонували розглядати область так називаної функції Жуковського G, що визначається рівністю
(3.53)або
(3.54)Тепер можна записати граничні умови для функції Жуковського, вірніше, для її уявної частини:
уздовж границі АВ з верхньою водоймою (б'єфом)
(3.55)χ AB на кривої депресії ВР, розташованої між k-м й (k+1)-м водоймами,
(3.56)