Смекни!
smekni.com

Дослідження процесів масопереносу при фільтрації підземних вод (стр. 2 из 16)

Таким чином, у випадку знехтування дифузійними процесами питання про визначення концентрації речовин, що забруднюють підземні води, зводиться до рішення відповідного фільтраційного завдання й одного з рівнянь (1.20)-(1.22) при одній додатковій (початковій) умові, що задається залежно від фізичної постановки завдання.

Важливою характеристикою при дослідженні процесу забруднення підземних вод є час, протягом якого в даній точці області

(або області z)концентрація розчинної речовини досягає певної величини. Крім того, виникає також питання про визначення часу, протягом якого концентрація розчинної речовини досягає в даній точці максимального значення. Основні диференціальні рівняння, з яких визначаються ці характеристики, а також фронт просування речовини (домішок) у фільтарционному потоці будуть наведені нижче.

Нехай відома концентрація розчинного у фільтраційному потоці речовини як функції координат точок області комплексного потенціалу

й часу t . Тоді для кожного значення (моменту) часу t можна побудувати поверхня розподілу концентрації щодо області комплексного потенціалу
, а отже, і щодо області фільтрації z . Тим самим для кожного моменту часу буде визначене значення концентрації речовини, що поширюється в підземних водах, у будь-якій точці області фільтрації або уздовж лінії, що цікавить нас, зокрема, уздовж кожної з ліній потоку або еквіпотенціальних ліній.

Якщо ж припустити, що міграція речовини відбувається з постійною концентрацією, то час, протягом якого відбудеться забруднення певної частини області фільтрації, знайдемо в такий спосіб. Нехай відома швидкість фільтрації v(x,y,t) і характеристична функція плину, отримана у вигляді (1.16). Швидкість поширення розчинного у фільтраційному потоці речовини U(x,y,t) у цьому випадку дорівнює дійсній швидкості руху підземних вод V(x,y,t) , яка зв'язана зі швидкістю фільтрації v(x,y,t) співвідношенням

(1.23)

де через

позначена активна пористість ґрунту (породи). При миттєво протікаючих сорбіційних процесах, що визначаються рівністю (1.9), активна пористість заміняється так називаною ефективною пористістю середовища, обумовленої рівністю

(1.24)

З (1.23) одержуємо

(1.25)

Після перетворення рівності (1.25) до нових незалежних змінних

й
маємо

(1.26)

Замість рівнянь (1.20)-(1.22) зручно розглядати рівняння

(1.27)

де

- безрозмірні величини, причому
. До рівняння (1.27) можна легко звести кожне з рівнянь (1.20)-(1.22). Дійсно, якщо в рівнянні (1.27) покласти

то одержимо рівняння (1.20), якщо в рівнянні (1.27) покласти

то одержимо рівняння (1.21), а якщо в рівнянні (1.27) покласти

те одержимо рівняння (1.22).

Математичні моделі міграції

Зупинимося тепер на математичних моделях міграції (поширення) у фільтраційних потоках неконсервативних забруднюючих речовин (домішок). Неконсервативність такої домішки породжується їхньою взаємодією в результаті різних хімічних і біохімічних перетворень. Тому математична модель таких хімічних і біохімічних взаємодій будується за допомогою системи диференціальних рівнянь щодо концентрації кожної з речовини, що вступає в реакцію.

У підземні води можуть попадати й інші неконсервативні речовини, які добре взаємодіють із киснем, що втримується в підземних водах. Тому, якщо концентрацію неконсервативної речовини позначити через cнв, а концентрацію розчиненого в підземних водах кисню - cРК, то поширення таких речовин у підземних водах можна описати наступною системою рівнянь:

(1.28)

(1.29)

(1.30)

(1.31)

Члени рівнянь, що містять функцію

, описують кінетику хімічної або біохімічної взаємодії (окислювання хімічної речовини або деструкцію органічної речовини за рахунок подиху мікроорганізмів). Опис цієї взаємодії представляє досить складне завдання. Однак для такого опису можна використати деякі закони хімічної кінетики. Зокрема, якщо скористатися законом діючих мас, то дана взаємодія буде описуватися відповідно до кінетики ізотермічної бімолекулярної реакції

(1.32)

де зазвичай ставлять m = n = 1.

У практиці математичного моделювання використовуються й більш прості кінетичні залежності, зокрема, можна використати систему рівнянь Стритера - Фелпса:

(1.33)

. (1.34)

У випадку значного перевищення концентрації кисню над концентрацією забруднюючої речовини (малі концентрації забруднення) можна використати ще більш прості залежності, а саме

(1.35)

або

(1.36)

Для моделювання динаміки неконсервативної речовини до рівнянь (1.28)-(1.31) необхідно додати початкові й граничні умови, потім відшукати аналітичне, числено-аналітичне або чисельне рішення відповідної крайової задачі. Зокрема, крайова задача для моделювання динаміки БПК (органіки, що окисляєлегко) і РК (розчиненого кисню) при плоско-вертикальній фільтрації підземних вод записується в такому виді:

(1.37)

(1.38)

(1.39)

(1.40)

(1.41)

(1.42)

(1.43)

(1.44)

1.1.2. Моделювання конвективної дифузії розчинених речовин при профільній фільтрації

Процес масопереносу розчинних у підземних водах речовин описується системою диференціальних рівнянь у частинних похідних другого порядку зі змінними коефіцієнтами, яка у випадку двовимірної плоско-вертикальної (профільної) сталої фільтрації підземних вод за умови сталості коефіцієнта конвективної дифузії має такий вигляд:

(1.45)

(1.46)

(1.47)

де D - коефіцієнт конвективної дифузії в м

/сут, c й N - концентрація речовин, що дифундують, у г/л або кг/м
відповідно в рідкій і твердій фазах; vx(x, y, tvy(x, y, t) - координати вектора швидкості фільтрації в м/сут; σ - пористість або активна пористість ґрунту, у якому відбувається рух вод і конвективная дифузія розчинної речовини; α - постійна масообміну (швидкості сорбції); c0 - початкова концентрація речовини в рідкій фазі; β - коефіцієнт розподілу речовини між рідкою й твердою фазами в умовах рівноваги за законом лінійної ізотерми Генрі, що виражається рівністю cp = βN, причому через cp позначена рівноважна концентрація розчину, по величині рівна кількості речовини, що поглинає твердою фазою;
-потенціал швидкості фільтрації; χ - коефіцієнт фільтрації в м/сут;
- напір в м; p-тиск у
Н(м2 =кг/м·c2 ); ρ - щільність у кг/м3; g - прискорення сили ваги в м/с2.