5.5 Влияние на гидробионтов антропогенного поступления биогенов в условиях закисления водной среды
Учитывая приоритетность фосфора в лимитировании продуктивности биоценозов ксеногалобных водоемов, проведены эксперименты по изучению комплексного воздействия на зоопланктонные организмы Рмин. и рН. Корреляционный, регрессионный и графический анализ полученных результатов по градиенту закисления показал, что снижение активной реакции от нейтральной до кислой оказывает закономерное отрицательное влияние на модельные популяции D. pulex. В диапазоне рН 6.5-5.0 дополнительное поступление фосфора практически не уменьшает негативного эффекта и только при снижении рН до 4.5 внесение фосфора в концентрациях 0.05-0.80 мгР/л приводит к увеличению суммарной биомассы в 1.3-1.6 раза, т.е по сравнению с биогенной нагрузкой рН является более мощным экологическим фактором, воздействующим на функциональное состояние популяций зоопланктона.
В то же время, оценка экспериментальных и рассчитанных по уравнениям регрессии данных по градиенту биогенной нагрузки выявила стимулирующий эффект от дополнительного внесения фосфора во всем диапазоне исследованных рН. При этом, биологически значимый эффект биогенного воздействия усиливается по мере снижения постоянно действующего рН, достигая достоверных различий с контролем (без внесения фосфора) в диапазоне рН 5.5-4.5. Пороговые концентрации фосфора (ПК1.2), стимулирующие развитие популяций D. pulex по сравнению с контролем на 20 %, при низких значениях рН (5.5, 5.0 и 4.5), характерных для значительно закисленных б-мезоацидных вод, существенно меньше, чем при рН 6.0-7.0, соответствующих в-мезоацидному и олигоацидному классу вод (рис.9).
Рис. 9. Воздействие дополнительной фосфорной нагрузки на модельные популяции Daphniapulex при различных значениях рН водной среды (по расчетным данным): стрелками указаны стимулирующие ПК1.2 фосфора
5.6 Оценка степени закисления поверхностных вод таежной зоны Европейского Севера России по зоопланктону
Исходя из предложенной С.П. Китаевым (1984) классификации ацидности озер различных природно-климатических зон, северотаежные водоемы разделены нами, с учетом региональной нормы реакции зоопланктонных организмов на закисление, на 4 группы: олигоацидные (рН 6.5), -мезоацидные (рН 6.4-5.5), -мезоацидные (рН 5.4-4.0) и полиацидные (рН < 4.0). Указанные пределы величины рН среды в озерах разных групп соответствуют характеру влияния этого показателя на качественный состав зоопланктонных комплексов и количество встреченных видов. На основании анализа опубликованных данных комплексных исследований, проводимых на водоемах таежной зоны Северо-Запада России, исходя из минимальных значений рН воды, при которых обнаружены те или иные зоопланктонные организмы, выделены наиболее показательные виды-индикаторы закисления и составлена шкала распределения индикаторных видов зоопланктона по степени закисления поверхностных вод, ориентированная на водные экосистем зоны северной тайги (табл. 4).
Отметки на шкале соответствуют значениям, предложенным Raddum, Fjellheim (1984) и используемым В.А. Яковлевым (1998) для распределения бентосных организмов. В разработанной нами шкале биоиндикаторы закисления объединены в группы в соответствии с их толерантностью к определенному уровню рН среды и обозначены категорией закисления вод. Оценка степени закисления озерных вод с использованием биологической шкалы распределения видов зоопланктона позволяет определить принадлежность озер к одной из четырех групп и дать картину реальной экологической ситуации в закисленных водоемах.
Проведенный по опубликованным данным и архивным материалам СевНИИРХ ПетрГУ анализ количественного развития видов зоопланктона - биоиндикаторов по параметру "рН-устойчивости" в пяти условно чистых озерах южной Карелии (Сангое, Вагатозеро, Лаймолаярви, Паяозеро, Пялизъярви), отличающихся величиной рН, озерно-речной системе Кенти-Кенто, испытывающей мощную антропогенную нагрузку от Костомукшского ГОКА и трех зонах Северного Выгозера, в разной степени подверженных воздействию Сегежского ЦБК, показал, что составленная нами биологическая шкала степени закисления вод позволяет достоверно оценить реакцию биоценоза природных озер на процесс ацидификации в условиях различной степени токсификации и эвтрофикации. Полученные результаты дают основание рекомендовать региональную шкалу ацидорезистентности зоопланктоценозов для прогнозирования и раннего предупреждения отрицательных последствий закисления поверхностных вод таежной зоны Европейского Севера России.
Таблица 4 Биологическая шкала распределения видов зоопланктона по степени закисления поверхностных вод таежной зоны Европейского Севера России
Вид, таксон | Отметка на шкале(группа ацидности) | Закисление |
Rotatoria: Asplanchna priodonta, Plaesoma truncatum, Euchlanis dapidula , Filinia longiseta; Cladocera: Limnosida frondosa, Daphnia longispina, D. cristata, Bosmina coregoni, B. kessleri, Leptodora kindtii, Ceriodaphnia reticulate; Copepoda: Limnocalanus grimaldii macrurus, Eudiaptomus gracilis, Cyclops strenuus, Eucyclops macrurus | 1 (олигоацидная) | Нет или слабое,рН 6.5 |
Rotatoria: Bipalpus hudsoni, Euchlanis lyra, E. myersi, Synchaeta spp., Polyartraeuryptera; Cladocera: Diaphanosoma brachiurum, Chydorus sphaericus, Eurycercus lamellatus, Ceriodaphnia affinis, Alona spp; Copepoda: Eudiaptomus graciloides, Cyclopsscutifer, Cyclops vicinus | 0.5 (-мезоацидная) | Среднее,pH 6.4-5.5 |
Rotatoria: Keratella cochlearis, Kellicotia longispina, Conochilus spp.,Trichocerka spp., Lecane spp.; Cladocera: Holopedium gibberum, Scapholeberis spp., Sida cristalina, Bosmina obtusirostris v. lacustris, Ceriodaphnia quadrangula, Alonopsis elongata; Copepoda: Eudiaptomus denticornis, Eucyclops serrulatus, Mesocyclops leuckarti, M. oithonoides, Macrocyclops spp. | 0.25(-мезоацидная) | Значительное,рН 5.4-4.0 |
Rotatoria: Keratella serrulata, Keratella cochlearis v. macracantha, Lecane lunaris; Cladocera: Ophryoxus gracilis, Pleuroxus laevis, Polyphemus pediculus; Copepoda: Paracyclops fimbriatus, Acantocyclops languidoides, A. nanus, A. bisetosus | 0(полиацидная) | Сильное,рН < 4.0 |
6. Экологические основы нормирования антропогеннойтоксикологической нагрузки на пресноводные водоемы
Представленные в работе материалы свидетельствуют о том, что токсикорезистентность водных биоценозов существенно изменяется в географическом и временном аспекте, поэтому экологически обоснованное нормирование антропогенного загрязнения должно учитывать зональные и азональные особенности устойчивости водных экосистем к интоксикации. Однако результаты анализа данных аннотационных карт по токсикометрии 160 веществ показали, что общефедеральные рыбохозяйственные ПДК на 77 % являются функцией токсикорезистентности общепринятых индикаторных тест-объектов, не отражающих всего многообразия устойчивости к антропогенной интоксикации водных экосистем различных природно-климатических зон и биогеохимических провинций России.
Если использовать весь объем информации по разработанным ПДК и одновременно учитывать необходимость регионального регламентирования, в качестве первого шага повышения экологической значимости токсикологических нормативов целесообразно внести следующие коррективы в действующую систему общефедеральных рыбохозяйственных ПДК:
1. Все рыбохозяйственные ПДК разделить на 5 категорий в соответствии с гидрохимическим режимом и трофическим статусом водоема, на фоне которого проводится разработка регламента (табл. 5).
-в "О" категорию заносятся ПДК для веществ, токсичность которых согласно экспериментальной обоснованности не зависит от абиотических и биотических факторов среды (например, супермутагены);
-регламенты более высоких категорий могут распространятся (до специальной разработки) на более низкую категорию фоновой среды (например, 1 - на 2-4, 2 - на 3-4), но не наоборот;
-отнесение фонового водоема по любому параметру к более низкой категории означает категорийную принадлежность разработанного регламента;
-при снижении реагентом качества опытной среды в указанных пределах стандартных параметров (повышение минерализации, жесткости и т.д.) категория разработанного регламента соответственно понижается.
Таблица 5 Категории эколого-токсикологических регламентов (ОБУВ, ПДК)
Категория | Параметры фонового водоема разработки регламента | |||||
регламента | трофический статус (хлорофилл, мкг/л) | минерализа-ция,мг/л | жесткость,мг-экв/л | ХПК, мгО/л | БПК20, мгО2/л | сапробность, (индекс) |
0 | Полютанты, токсичность которых не зависит от зональных и азональных факторов токсикорезистентности водных экосистем | |||||
1 | олиготрофный(< 3) | до 125 | до 1.50 | до 7.5 | до 1.0 | ксеносапроб-ный (до 0.50) |
2 | мезотрофный (3-12) | 126-250 | 1.51-3.00 | 7.6-15.0 | 1.1-2.0 | олигосапроб-ный (0.51-1.50) |
3 | эвтрофный (12-48) | 251-500 | 3.01-6.00 | 15.1-30.0 | 2.1-3.0 | мезосапроб-ный (1.51-3.50) |
4 | гипертрофный (> 48) | 501-1000 | > 6.00 | > 30.0 | > 3.0 | полисапроб-ный (> 3.50) |
2. Разработку эколого-токсикологических регламентов необходимо проводить на чистой воде из регионального водоема с использованием регионально представительных олиготоксобных гидробионтов, т.е. с учетом зональных и азональных особенностей нормы реакции водных экосистем. Исследования на индикаторных организмах должны быть вспомогательными.
3. Методической базой экологической "привязки" наработанных общефедеральных ПДК могут стать региональные ряды токсобности представительных олиготоксобных гидробионтов и соотнесение их с устойчивостью стандартных общепринятых тест-объектов (дафния магна, сценедесмус, радужная форель).