В первую очередь необходимо провести анализ, в ходе которого определить:
- степень загрязнения ПТО отложениями (по описанной выше методике);
- соответствие входных температур теплоносителей и их расходов расчетным.
Для повышения теплопроизводительности ПТО можно рекомендовать следующие мероприятия:
1. Химическая промывка (или механическая очистка).
2. Повышение температуры и расхода греющего теплоносителя.
3. Замена ПТО.
4. Реконструкция ПТО с переводом на двухходовую схему и увеличением количества пластин.
Проводилось еще мероприятие на котельной в г. Сергач.
На указанной котельной по проекту были установлены два ПТО отопления марки FPS-43-163-1E фирмы «FUNKE» тепловой мощностью 8,0 МВт каждый. В процессе эксплуатации обнаружилось, что имеет место быстрое зарастание поверхностей нагрева ПТО накипными отложениями, вследствие чего котельная оказалась «заперта» - не удавалось нагреть сетевую воду выше 65-70 °С (при графике 95/70 °С).
Обследование показало - при расчетном коэффициенте теплопередачи ПТО 6600 Вт/(м2•°С), фактическое его значение составляло всего лишь 1736-2343 Вт/(м2•°С), что соответствует относительному параметру (ф/фо)= 0,26-0,36. При разборке ПТО на поверхности нагрева были обнаружены накипные отложения толщиной 0,2-0,3 мм следующего состава: 78% солей кальция, 22% оксидов железа.
Для нормализации теплоснабжения от котельной в первую очередь были предприняты меры по увеличению расхода (примерно на 30%) и температуры котловой воды до максимальной - от 110 до 115 °С, а также корректировке реагентного водно-химического режима. Хотя все эти мероприятия дали ограниченный эффект (удалось повысить температуру сетевой воды на 5-7 °С), в сочетании с регулярными хим-промывками это позволило не допустить срыва теплоснабжения жилого района.
Радикально проблема была решена только в летний период 2003 г., когда в сотрудничестве с известной фирмой-производителем пластинчатых теплообменников «Ридан» была проведена реконструкция ПТО с переводом на двухходовую схему движения теплоносителей и увеличением количества пластин с 163 до 250 шт.
В результате реконструкции удалось полностью нормализовать теплоснабжение от котельной.
К отрицательным последствиям реконструкции ПТО следует отнести следующие:
- гидравлическое сопротивление ПТО увеличилось с 2,0 до 6,8 м вод. ст., т.е. в 3,4 раза;
- осложнена операция разборки ПТО из-за устройства портов и подводящих трубопроводов с двух сторон теплообменника.
Выводы
1. Поверхности нагрева ПТО подвержены загрязнению отложениями накипи, окислов железа и других механических примесей, содержащихся в сетевой воде. Интенсивность и характер загрязнения определяется качеством воды (жесткостью, концентрацией примесей) и ее температурой.
2. Загрязнение ПТО с высоким расчетным коэффициентом теплопередачи сопровождается значительным снижением тепловой эффективности аппарата.
3. Химическая промывка ПТО (в особенности загрязненных окислами железа) является сложной технологической операцией, требует профессионального подхода к выбору реагентов и технологий промывки.
4. С целью уменьшения загрязнения ПТО продуктами коррозии железа и другими механическими примесями, содержащимися в сетевой воде, следует применять осветлительные фильтры, инерционно-гравитационные грязевики типа ГИГ и др. устройства очистки.
5. Для предотвращения накипеобразования на поверхностях нагрева ПТО, подогревающих сетевую воду с высокой жесткостью, и снижения скорости коррозии тепловых сетей рекомендуется применять реагентный (комплексонный) водно-химический режим тепловых сетей.
6. При проектировании и выборе ПТО в обязательном порядке необходимо учитывать возможное загрязнение поверхности нагрева. Предложена методика подбора ПТО с учетом загрязнения.
Список использованной литературы
1. Химические очистки теплоэнергетического оборудования, Вып./ Под общей ред. Т.Х.Маргуловой.-М.: Энергия, 1990. – 176 с., ил.
2. Журнал «Теплоэнергетика» №8 2005г. Никитин В.И доктор техн. наук.
3. Журнал «Теплоэнергетика» №4 2004г. Смыслова М.К., канд. техн. наук, Смыслов А.А. инженер.
4. Журнал «Теплоэнергетика» №4 2004г. Бухин В.Е., канд. техн. наук.
5. Журнал « Новости теплоснабжения» №9 (сентябрь); 2005г. К.т.н А.А.Шарапов, вед. научный сотрудник ЦНИ Ичермет И.П.Бардина
6. Тепло-технические испытания котельных установок, Трембовля В.И., Фингер Е.Д., Авдеева А.А.; Москва; Энергоатомиздат 1991г.
7. Журнал «Новости теплоснабжения» №3 2005г.