Сорбционная очистка сточных вод производства — это процесс поглощения частиц загрязнителя различными фильтрующими материалами. Основным критерием при выборе того или иного фильтрующего материала являются сорбционные свойства материала, так как именно от них зависит эффективность очистки сточных вод гальванического производства. Среди критериев выбора фильтрующего материала можно назвать несколько основных свойств материала:
Механическая прочность материала.
От механической прочности используемого для сорбционной очистки сточных вод гальванического производства материала напрямую зависит качество очистки воды. Непрочные материалы при взаимодействии с загрязненной водой быстро истираются и повреждаются, что приводит к ухудшению работы сорбционных фильтров, так как задействование всего объема фильтрующего материала в процессе очистки становится невозможным: поврежденные участки материала не участвуют в фильтрации.
Химическая устойчивость материала.
Очистка сточных вод гальванического производства предполагает постоянный контакт фильтрующего материала с различными химически активными веществами, которые могут разрушить тот или иной материал, что опять же приведет к потере эффективности работы системы очистки сточных вод производства. Выбор того или иного материала основывается на его устойчивости к тем веществам, которые содержатся в подлежащей обработке воде.
Сорбционные свойства материала.
Основным критерием при выборе фильтрующего материала для очистки сточных вод гальванического производства становятся его сорбционные качества. Оптимальной структурой для фильтрующего материала считается пористая структура. Процесс сорбционной очистки сточных вод гальванического производства — это процесс задержания частиц загрязнителя в порах фильтрующего материала, поэтому предпочтение при выборе фильтрующего материала отдается материалом с сильнопористой поверхности, поры которой различны по размеру.
Сорбционная очистка сточных вод гальванического производства считается одной из наиболее эффективных и экологически чистых мер водоочистки. Единственным минусом сорбционной очистки сточных вод производства считается использование не возобновляемых материалов: засорившиеся фильтрующие материалы подлежат обязательной замене. Мембранные технологии очистки сточных вод гальванического производства. Одной из самых эффективных мер очистки сточных вод производства считается использование мембранных технологий. Мембранные методы очистки сточных вод гальванического производства — это процесс процеживания воды через полупроницаемые мембраны под давлением. В ходе подобного рода очистки сточных вод производства из воды удаляется до 98% всех растворенных веществ, в том числе и тяжелых металлов — основных загрязнителей сточных вод гальванического производства. Процесс очистки сточных вод производства при помощи мембранных методов основывается на технологии обратного осмоса, при котором загрязненная вода разделяется на две неравные части. Полупроницаемая мембрана в ходе очистки сточных вод гальванического производства отделяет меньший объем воды с большей концентрацией растворенных веществ от чистой воды, избавленной от любого рода примесей. Очистка сточных вод производства мембранным методом осуществляется на молекулярном уровне, что позволяет судить о высокой эффективности этой технологии водоочистки.
Для успешной работы мембранных фильтров очистки сточных вод производства необходимо производить периодическую промывку мембраны, в ходе которой с ее поверхности удаляются частицы загрязнителей. При полном засорении мембраны теряется ее проницаемость и в итоге вода не проходит сквозь нее, что приводит к отказу фильтров очистки сточных вод производства.
Основным недостатком мембранной очистки сточных вод гальванического производства считается чувствительность мембран к механическому воздействию, а также к некоторым химически активным веществам. При выборе технологии очистки сточных вод производства рекомендуется произвести полный анализ воды, который выявит необходимость проведения предварительных мер очистки до подачи воды в мембранные фильтры очистки сточных вод гальванического производства.
Глава 3. ВЫДЕЛЕНИЕ ХРОМА ИЗ ПРОМЫВНЫХ ВОД ПРОЦЕССОВ ГАЛЬВАНОСТЕГИИ
Строгие требования органов охраны окружающей среды не позволяют сбрасывать непосредственно в водоемы или канализацию сточные воды, содержащие хром, например в виде хромовой кислоты, хроматов металлов и т. п. Кроме того, хром является дорогостоящим металлом и его извлечение из хромсодержащих растворов является желательным и с экономической точки зрения. Уже длительное время существует потребность в экономичном и эффективном способе удаления хрома из сточных вод и его регенерации.
Процесс предназначен для удаления и извлечения хрома из сточных вод в виде хромовой кислоты и (или) хроматов металлов путем непосредственного осаждения хрома карбонатом бария. Процесс проводится в водных растворах, содержащих ледяную уксусную кислоту, предпочтительно при рН = 4,5-4,7; получающийся хромсодержащий материал отфильтровывают через кислотоустойчивый фильтр, предпочтительно с размером пор 2—4мкм при рН ~ 2-5. Предпочтительно использовать массовое отношение карбоната бария к хромсодержащим соединениям, находящимся в растворе, 2 : 1 и карбоната бария к уксусной кислоте 3:1. Карбонат бария и уксусную кислоту смешивают в водной среде непосредственно перед употреблением. Эту смесь добавляют к хромсодержащим сточным водам; можно поступать и наоборот, т. е. приливать сточные воды к данной смеси.
Схема процесса представлена на рис. 32. В результате процесса хромирования получают хромированные детали, которые промывают в одном или нескольких промывных резервуарах; в последнем из них обычно проводится промывка горячей водой.
При промывке деталей в резервуарах 1 происходит увеличение концентрации ионов хрома в растворе. Загрязненная жидкость из промывных резервуаров направляется на обработку по линии 2; в другом варианте жидкость свободно стекает из промывного резервуара в резервуар для обработки. Туда подается смесь карбоната бария и уксусной кислоты, количества которых зависят от содержания хрома в промывных водах и определяются как было описано выше.
В резервуаре для обработки 3 предусматриваются обычные перемешивающие устройства; предпочтительно перемешивание с помощью воздуха. После перемешивания в резервуаре 3 раствор по линии 4 подается на фильтр 5 с размером пор 2—4мкм. В случае необходимости дальнейшей обработки фильтрат по линии 6 направляют в дополнительный резервуар 7 или в автономную фильтрующую систему как показано на схеме стрелками. В резервуар 7 добавляют серную кислоту или аналогичные соединения для осаждения остаточных количеств бария, например в виде сульфата бария.
Затем смесь подается по линии 5 на фильтр 9 с размером пор 1—3 мкм, где происходит улавливание сульфата бария. Фильтрат по линии 10 может быть непосредственно сброшен в канализацию или в водоем, а при непрерывном процессе по линии 11 направлен для повторного использования в промывной резервуар 1.
Процесс предназначен для извлечения ионов хромата в виде хромовой кислоты. Процесс включает стадии добавки восстановителя к сточным хроматсодержащим водам для осаждения хрома в виде гидроксида хрома (III); добавления к осадку щелочи и водного раствора пероксида водорода для получения хроматсодержащего водного раствора и пропускание полученного раствора через кислотную катионообменную смолу в Н-форме.
Процесс предназначен для выделения раствора хромовой кислоты из сточных вод. Сточные воды подвергают деионизации, последовательно пропуская через две или более колонны с анионообменной смолой.
В ходе обработки ионообменная способность смолы в первой колонне уменьшается. Когда концентрация ионов хрома в подаваемом и выходящем из колонны растворе становится одинаковой, проводят промывку колонны обратным потоком.
Во время регенерации первой колонны сточные воды подаются на вход второй колонны с анионитом. После окончания регенерации колонна снова подключается к очистной анионообменной системе, однако уже в качестве последней колонны.
Этот процесс регенерации затем последовательно повторяется, каждый раз для той колонны, которая является первой в очистной системе; такой метод работы позволяет проводить непрерывную очистку поступающих сточных вод. Раствор, образующийся в результате регенерации, пригоден для повторного использования в качестве раствора хромата.
Процесс предназначен для обработки хромсодержащих сточных вод, получаемых при промывке хромированных изделий, с помощью ионообменных смол. Для увеличения скорости извлечения хромовой кислоты, повышения срока службы ионообменной смолы и предотвращения образования осадка, к сточным водам добавляют щелочные соединения до получения приблизительно нейтральной реакции; ионы металлов, содержащиеся в растворе, при этом осаждаются в виде гидроксидов, которые затем удаляют на стадии фильтрования.
Получаемый фильтрат, реакция которого поддерживается нейтральной, направляется в башню предварительной обработки, наполненную катионообменной смолой, где в результате адсорбции происходит удаление щелочных компонентов. Получаемый разбавленный раствор двухромовой кислоты концентрируют в адсорбционной башне, заполненной анионообменной смолой, и подвергают очистке в башне с катионообменной смолой в результате чего получают чистый раствор двухромовой кислоты. Башни предварительной обработки и очистки регенерируют, обрабатывая серной кислотой.