Смекни!
smekni.com

Проблеми екології та шляхи їх вирішення (стр. 2 из 3)

Поряд з потоками енергії й круговоротом речовини екосистеми зв'язані також інформаційними мережами. Керування й регулювання в них здійснюється за допомогою фізичних і хімічних елементів. Такі керуючі системи по своєму функціональному призначенню можна розглядати як кібернетичні. Однак на відміну від штучних систем, створених людиною, у природних екосистемах елементи керування розосереджені усередині самої системи й тому процес регулювання й керування в них відбувається не із зовнішнього спеціального органа керування, як у технічних кібернетичних системах.

Відповідно до кібернетичних принципів, усякий процес керування пов'язаний з передачею й перетворенням інформації. Для стійкого динамічного функціонування системи необхідно, по-перше, наявність прямих сигналів, що несуть інформацію від керуючого до виконавчого пристрою, по-друге, зворотних сигналів, які інформують керуючий пристрій про виконання команд. Одержавши такі сигнали, керуючий пристрій віддає команду про коректування системи, якщо її положення відхиляється від заданого або встановленого. Саме таким способом здійснюється автоматичне регулювання не тільки в кібернетичних системах, але й у живих організмах. У фізіології цей спосіб підтримки динамічної рівноваги був сформульований американським фізіологом Уолтером Кенноном (1871-1945) у вигляді принципу гомеостазу, відповідно до якого всі найважливіші параметри організму (температура тіла, частота пульсу й подиху, склад крові й кров'яний тиск і ін.) підтримуються на постійному рівні завдяки зворотним сигналам, що надходять із органів у головний мозок.

Кібернетика узагальнила це положення у вигляді принципу зворотного зв'язку. Неважко зрозуміти, що зазначений принцип пояснює лише процес досягнення й збереження динамічної рівноваги в будь-якій системі, але для того щоб зрозуміти, як відбуваються еволюція й розвиток систем, необхідно визнати виникнення змін у стані й структурі систем. А для цього варто ввести принцип позитивного зворотного зв'язку, відповідно до якого безперервні впливи на систему, поступово накопичуючись, приводять до руйнування колишніх зв'язків між її частинами й виникненню нової її структури.

В екосистемах живої природи дія цих принципів здобуває більше складний характер, оскільки, як ми бачили, що регулюють центри в них дифузні, або розподілені усередині всієї системи, а наявність надмірності, коли та сама функція виконується декількома компонентами, забезпечує необхідну стабільність системи. Ця стабільність залежить від безлічі умов, але визначальні серед них - ступінь опору зовнішнього середовища й ефективність роботи керуючих механізмів самої системи. Для більше конкретної характеристики стабільності екосистем звичайно вводять поняття резистентної стійкості, що визначається як здатність системи пручатися зовнішнім навантаженням і залишатися при цьому стійкій. Поняття пружної стійкості характеризує здатність системи швидко відновлювати свою стійкість. При сприятливих умовах зовнішнього середовища екосистеми звичайно підвищують свою опірність ускладненням внутрішньої структури. Раптові й випадкові зміни зовнішнього середовища (наприклад шторми) можуть різко знизити стійкість екосистеми й навіть зруйнувати її. Таким чином, тісний взаємозв'язок і взаємодія між живими організмами й навколишнім середовищем являють собою характерну рису всіх екосистем. Хоча окремий організм, будучи відкритою системою, також взаємодіє з оточенням, проте взаємодія екосистеми із середовищем має більше ефективний і сталий характер.

Ця особливість проявляється насамперед у досягненні більшої стабільності функціонування й розвитку екосистем у порівнянні з окремими організмами в результаті встановлення інформаційних зв'язків між окремими організмами в рамках системи, виникнення ієрархічних відносин між окремими її підсистемами, які приводять до ускладнення її структури. У зв'язку із цим ще раз варто підкреслити, що будь-яка екосистема, починаючи від популяції й кінчаючи екосферою, являють собою надорганізмений рівень організації живого в природі, що якісно відрізняється від окремого організму. Саме в результаті об'єднання окремих організмів у рамках цілого, їхньої взаємодії один з одним екосистема здобуває нові, системні властивості, які відсутні в окремих організмів. Відповідно до цього міняються й різні відносини й зв'язки екосистеми з навколишнім середовищем. Найбільш важливими й по суті вирішальними є енергетичні зв'язки.

Якщо простежити процеси перетворення й одержання енергії в екосистемах, то не можна не прийти до того висновку, що зробив згадуваний вище Майєр, що затверджував, що життя є створення сонячного променя. Дійсно, промениста енергія Сонця за допомогою фотохімічного синтезу спочатку перетвориться зеленими рослинами в органічні сполуки, які згодом служать їжею для тварин, які харчуються рослинами, а останні у свою чергу - їжею для інших тварин. Крім того, задовго до цього органічна речовина, заготовлена протягом тисячоріч рослинами, як і самі рослини, особливо дерева, піддалися численним хімічним перетворенням і утворили те викопне паливо, що дотепер служить найважливішим джерелом енергії для суспільства.

В екосистемах відбувається постійне перетворення сонячної енергії в більше концентровані її форми спочатку автотрофними рослинами, а потім гетеротрофними тваринами й людиною. При цьому на кожній стадії перетворення енергії відбувається також її дисіпація, або розсіювання, у навколишній простір. Закон збереження енергії повністю вірний й до цих систем, тому що ніколи не спостерігалися випадки створення енергії з нічого. Енергія може лише перетворюватися з однієї форми в іншу, але вона ніколи й нікуди не зникає.

Другий закон термодинаміки, що у фізиці звичайно формулюють за допомогою поняття ентропії, в екології воліють виражати за допомогою твердження про перетворення концентрованої енергії в розсіяну. Процес концентрації розсіяної сонячної енергії відбувається, як уже говорилося вище, у різних живих системах і охоплює тривалий період часу. Отримана концентрована енергія може бути надалі використана в екосистемах у вигляді їжі, а в техніці - як паливо. В обох випадках буде відбуватися перетворення концентрованої енергії в розсіяну. Яку енергію можна вважати концентрованої?

З екологічної точки зору, енергія по способу свого одержання буде тим більше концентрованої, чим далі відстоїть джерело її одержання, наприклад їжа, від початку перетворення розсіяної сонячної енергії, тобто від автотрофних організмів, а саме зелених рослин і мікроорганізмів.

У фізичних термінах концентровану енергію можна визначити як таку, яка володіє низьким ступенем ентропії, тобто характерна меншим ступенем безладдя. Адже в результаті концентрації енергії відбувається виведення безладу із системи в зовнішнє середовище. Тому якщо безлад в системі зменшується, то в зовнішнім середовищі він збільшується.

На відміну від концентрації розсіювання енергії супроводжується зростанням безладдя в системі. Тому якщо система залишиться закритої, то вона виявиться повністю дезорганізованої, тобто прийде в стан максимального безладдя, що відповідає встановленню теплової рівноваги в системі.

Таким чином, з енергетичної точки зору системи можуть описуватися не тільки кількісно, але і якісно, причому високоякісними будуть уважатися найбільш концентровані форми енергії, які можуть мати більше високий робочий потенціал, тобто можливістю зробити відповідну роботу. Так, наприклад, викопне паливо має більший робочий потенціал, чим неуважна сонячна енергія. Аналогічно цьому тваринна їжа є більше якісної, чим рослинна. Опосередковано якість використовуваної енергії визначається хімічною структурою її джерела.

Всі наведені вище міркування показують, що при енергетичному підході завдання екології по суті справи зводиться до вивчення зв'язку між неуважним сонячним випромінюванням і екосистемами, а також процесами послідовного перетворення менш концентрованих форм енергії в більше концентровані.

Оскільки матеріальне виробництво суспільства істотно залежить від використання енергії, остільки представляється доцільним провести класифікацію екосистем з погляду застосування їхньої енергії в інтересах розвитку суспільства й насамперед його продуктивних сил. На цій основі можна виділити чотири фундаментальних типи екосистем.

1. Природні системи, що повністю залежать від енергії сонячного випромінювання, які можна назвати системами, спонукуваними Сонцем. Незважаючи на те що такі системи не в змозі підтримувати достатню щільність населення, вони проте важливі для збереження необхідних екологічних умов на планеті. Слід також зазначити, що такі природні системи займають величезну площу на земній поверхні. Адже тільки одні океани покривають 70% цієї поверхні.

2. Природні системи, спонукувані Сонцем, а також одержують енергію з інших природних джерел, до яких ставляться прибережні ділянки морів і океанів, більші озера, тропічні ліси й деякі інші екосистеми. Крім сонячної енергії, такі системи функціонують і ростуть за рахунок енергії, наприклад, морських прибоїв, припливів, глибоководних плинів, рік, дощів, вітру й тому подібних джерел.