в) Существование вредных веществ в природе в химически устойчивых формах. Минералы в земной коре сохраняются сотни миллионов лет. Распространенные акцессорные минералы (циркон, сфен и другие титано- и цирконосиликаты, апатит, монацит и другие фосфаты и т.д.) обладают большой изоморфной емкостью по отношению к многим тяжелым и радиоактивным элементам и устойчивы практически во всем интервале условий петрогенезиса. Имеются данные о том, что цирконы из россыпей, испытавшие вместе с вмещающей породой процессы высокотемпературного метаморфизма и даже гранитообразования, сохраняли свой первичный состав.
г) Минералы, в кристаллических решетках которых находятся подлежащие обезвреживанию элементы, в природных условиях находятся в равновесии с окружающей средой. Реконструкция условий древних процессов, метаморфизма и магматизма, имевших место много миллионов лет назад, возможна благодаря тому, что в кристаллических горных породах на протяжении длительного по геологическим масштабам времени сохраняются особенности состава образовавшихся при этих условиях и находившихся между собой в термодинамическом равновесии минералов.
Описанные выше принципы (особенно последние два) находят применение при обезвреживании радиоактивных отходов.
Существующие разработки МАГАТЭ рекомендуют захоронение отвержденных радиоактивных отходов в стабильных блоках земной коры. Матрицы должны минимально взаимодействовать с вмещающей породой и не растворяться в поровых и трещинных растворах. Требования, которым должны удовлетворять матричные материалы для связывания осколочных радионуклидов и малых актинидов, можно сформулировать следующим образом:
· Способность матрицы связывать и удерживать в виде твердых растворов возможно большее число радионуклидов и продуктов их распада в течение длительного (по геологическим масштабам) времени.
· Быть устойчивым материалом по отношению к процессам физико-химического выветривания в условиях захоронения (длительного хранения).
· Обладать термической устойчивостью при высоких содержаниях радионуклидов.
· Обладать комплексом физико-механических свойств, которые необходимо иметь любому матричному материалу для обеспечения процессов транспортировки, захоронения и пр.:
o механической прочностью,
o высокой теплопроводностью,
o малыми коэффициентами теплового расширения,
o устойчивостью к радиационным повреждениям.
· Иметь простую технологическую схему производства
· Производиться из исходного сырья, сравнительно низкой стоимости.
Современные матричные материалы подразделяются по своему фазовому состоянию на стеклообразные (боросиликатные и алюмофосфатные стекла) и кристаллические - как полиминеральные (синроки) так и мономинеральные (цирконий-фосфаты, титанаты, цирконаты, алюмосиликаты и т.п.).
Традиционно для иммобилизации радионуклидов применяли стекольные матрицы (боросиликатные и алюмофосфатные по составу). Эти стекла по своим свойствам близки к алюмосиликатным, только в первом случае алюминий заменен бором, а во втором - кремний фосфором. Эти замены вызваны необходимостью снижения температуры плавления расплавов и уменьшения энергоемкости технологии. В стекольных матрицах достаточно надежно удерживается 10-13мас.% элементов радиоактивных отходов. В конце 70-х годов были разработаны первые кристаллические матричные материалы - синтетические горные породы (синрок). Эти материалы состоят из смеси минералов - твердых растворов на основе титанатов и цирконатов и гораздо более устойчивы к процессам выщелачивания, чем стекольные матрицы. Стоит отметить, что наилучшие матричные материалы - синроки - были предложены петрологами (Рингвуд и др.). Способы остекловывания радиоактивных отходов, используемые в странах с развитой ядерной энергетикой (США, Франция, Германия), не отвечают требованиям их длительного безопасного хранения в связи со спецификой стекла как метастабильной фазы. Как показали исследования, даже наиболее устойчивые к процессам физико-химического выветривания алюмофосфатные стекла, оказываются малостабильными при условиях захоронения в земной коре. Что же касается боросиликатных стекол, то согласно экспериментальным исследованиям, в гидротермальных условиях при 350оС и 1 кбар они полностью кристаллизуются с выносом элементов радиоактивных отходов в раствор. Тем не менее, стеклование радиоактивных отходов с последующим хранением стекольных матриц в специальных хранилищах является пока единственным методом промышленного обезвреживания радионуклидов.
Рассмотрим свойства имеющихся матричных материалов. В таблице 4 представлена их краткая характеристика.
Таблица 4. Сравнительные характеристики матричных материалов
Свойства | (B,Si)-стекла | (Al,P)-стекла | Синрок | NZP1) | Глины | Цео-литы |
Способность фиксировать РН2) и продукты их распада | + | + | + | + | - | + |
Устойчивость к выщелачиванию | + | + | ++ | ++ | - | - |
Термоустойчивость | + | + | ++ | ++ | - | - |
Механическая прочность | + | + | ++ | ? | - | + |
Стойкость к радиационным повреждениям | ++ | ++ | + | + | + | + |
Устойчивость при размещении в породах земной коры | - | - | ++ | ? | + | - |
Технология производства 3) | + | - | - | ? | + | + |
Стоимость исходного сырья 4) | + | + | - | - | ++ | ++ |
Характеристики свойств матричных материалов: “++” - очень хорошие; “+” - хорошие; “-” - плохие.
1) NZP - фазы фосфатов циркония с общей формулой (IAxIIByIIIRzIVMvVCw)(PO4)m; где IAx ..... VCw - элементы I-V групп таблицы Менделеева;
2) РН - радионуклиды;
3) Технология производства: “+” - простая; “-” - сложная;
4) Исходное сырье: “++” - дешевое; “+” - среднее; “-” - дорогое.
Из анализа таблицы следует, что матричных материалов, удовлетворяющих всем сформулированным требованиям нет. Стекла и кристаллические матрицы (синрок и, возможно, насикон) являются наиболее приемлемыми по комплексу физико-химических и механических свойств, однако, высокая стоимость как производства, так и исходных материалов, относительная сложность технологической схемы ограничивают возможности широкого применения синрока для фиксации радионуклидов. Кроме того, как уже говорилось, устойчивость стекол недостаточна для захоронения в условиях земной коры без создания дополнительных защитных барьеров.
Усилия петрологов и геохимиков - экспериментаторов сосредоточены на проблемах, связанных с поиском новых модификаций кристаллических матричных материалов, более пригодных для захоронения радиоактивных отходов в породах земной коры.
Прежде всего, в качестве потенциальных матриц - фиксаторов радиоактивных отходов были выдвинуты твердые растворы минералов. Идея о целесообразности применения твердых растворов минералов в качестве матриц для фиксации элементов радиоактивных отходов была подтверждена результатами широкого петролого - геохимического анализа геологических объектов. Известно, что изоморфные замещения в минералах осуществляются, главным образом, по группам элементов таблицы Д.И.Менделеева:
в полевых шпатах: Na
K Rb; Ca Sr Ba; Na Ca (Sr, Ba);в оливинах: Mn
Fe Co;в фосфатах: Y
La...Lu и т.п.Задача состоит в том, чтобы среди природных минералов с высокой изоморфной емкостью подобрать твердые растворы, которые способны
концентрировать в себе указанные выше группы элементов радиоактивных отходов. В таблице 5 показаны некоторые минералы - потенциальные матрицы для размещения в них радионуклидов. В качестве матричных могут применяться как главные, так и акцессорные минералы.
Таблица 5. Минералы - потенциальные концентраторы элементов радиоактивных отходов.
Минерал | Формула минерала | Элементы РАО, изоморфно фиксируемые в минералах |
Главные породообразующие минералы | ||
Полевой шпат | (Na,K,Ca)(Al,Si)4O8 | Ge, Rb, Sr, Ag, Cs, Ba, La...Eu, Tl |
Нефелин | (Na,K)AlSiO4 | Na, K, Rb, Cs, Ge |
Содалит | Na8Al6Si6O24Cl2 | Na, K, Rb, Cs?, Ge, Br, I, Mo |
Оливин | (Fe,Mg)2SiO4 | Fe, Co, Ni, Ge |
Пироксен | (Fe,Mg)2Si2O6 | Na, Al, Ti, Cr, Fe, Ni |
Цеолиты | (Na,Ca)[(Al,Si)nOm]k*xH2O | Co, Ni, Rb, Sr, Cs, Ba |
Акцессорные минералы | ||
Перовскит | (Ce,Na,Ca)2(Ti,Nb)2O6 | Sr, Y, Zr, Ba, La...Dy, Th, U |
Апатит | (Ca,REE)5(PO4)3(F,OH) | Y, La....Dy, I(?) |
Монацит | (REE)PO4 | Y, La...Dy, Th |
Сфен | (Ca,REE)TiSiO5 | Mn,Fe,Co?,Ni,Sr,Y,Zr,Ba,La...Dy |
Цирконолит | CaZrTi2O7 | Sr, Y, Zr, La...Dy, Zr, Th, U |
Циркон | ZrSiO4 | Y, La...Dy, Zr, Th, U |
Список минералов таблицы 5 может быть существенно дополнен. По соответствию геохимических спектров для иммобилизации радионуклидов наиболее подходят такие минералы, как апатит и сфен, а вот в циркон концентрируются в основном тяжелые редкоземельные элементы.