Рисунок 9. Зависимость между содержанием кислых газов (Н2S) в природном газе
Из уравнения (3.6) получим соотношения между весовыми потоками распределяющих фаз:
Рисунок 10. Схема распределения концентрации в газовом и жидкостном потоках в абсорбере
Интегрируя уравнение (3.5) в пределах от начальных до текущих
откуда:
Или
где
Аналогичным путем для противоточного (течения) взаимодействия фаз может быть получено уравнение:
где
Из уравнений (3.9) и (3.10) следует, что концентрация распределяемого вещества в фазах G и L связана линейной зависимостью. Поэтому удобно процессы массообмена представлять графически в координатах
Расход инертной части газа:
G = V0(1 – уоб)(у0у – ун) (3.11)
где уоб – объемная доля Н2S в природном газе, равная
– молярная масса Н2S, равная 32 · 10-3 кг/моль
Тогда
G = 15,85 (1 – 0,602)(0,724 – 0,914) = 1,199 кг/с
Производительность абсорбера по поглощаемому компоненту
Расход поглотителя (метанола) равен:
Тогда соотношение расходов фаз, или удельный расход поглотителя составит:
Масса поглощаемого вещества и расход поглотителя на вторую ступень определяется по формулам, приведенным выше:
Все кинетические закономерности, использованные для расчета конечной концентрации примесей в поглотителе для первой ступени абсорбции, сохраняются для расчета конечной концентрации примесей во второй ступени абсорбции. В этом случае для определения конечной концентрации используют данные по равновесию по рисунку 14 и находят по уравнению (3.4):
где
Рисунок 11. Зависимость между Н2S в природном газе
Расход инертной части газа находят по уравнению (3.11)
G = 15,85 (1 – 0,602)(0,724 – 0,025) = 4,41 кг/с
Производительность абсорбера по поглощаемому компоненту:
Расход поглотителя:
Соотношение расходов фаз, или удельный расход поглотителя, составит:
3.3.2 Движущая сила массопередачи
Движущая сила в соответствии с уравнением (3.1) может быть выражена в единицах концентраций как жидкой, так и газовой фаз. Для случая линейной равновесной зависимости между составами фаз, принимая модель идеального вытеснения в потоках обеих фаз, определим движущую силу в единицах концентрации газовой фазы /19/.
где
В данном случае
где
Движущая сила массопередачи для второй ступени определяется по формуле:
где
где
3.3.3 Коэффициент массопередачи
Коэффициент массопередачи Ку находят по уравнению аддитивности фазовых диффузионных сопротивлений /19/.
где
Для расчета коэффициентов массопередачи необходимо выбрать тип насадки и рассчитать скорости в абсорбере. При выборе типа насадки для проведения массообменных процессов, как описано выше, руководствуются следующими соображениями /5, 19, 20, 21/:
во-первых, конкретными условиями процесса – нагрузками по газу, жидкости, различиями в физических свойствах систем, наличием в потоках жидкости и газа механических примесей, поверхностью контакта фаз в единице объема аппарата и т.д.;
во-вторых, особыми требованиями к технологическому процессу – необходимостью обеспечить небольшой перепад давления в колонне, широкий интервал изменения устойчивости работы, малое время пребывания жидкости в аппарате и т.д.
в-третьих, особыми требованиями к аппаратурному оформлению – создание единичного или серийно выпускаемого аппарата малой или большой единичной мощности, обеспечение возможности работы в условиях сильно коррозионной среды, создание условий повышенной надежности и т.д.
В нефтегазоперерабатывающей промышленности особое значение при выборе насадки имеют следующие факторы: малое гидравлическое сопротивление абсорбера, возможность быстро и дешево удалять с поверхности насадки отлагающийся шлам и т.д. в данном случае, когда газ очищается под повышенным давлением, гидравлическим сопротивлением можно пренебречь. Поэтому наиболее эффективна насадка, имеющая меньший эквивалентный диаметр, а следовательно, меньший коэффициент свободного объема и большую удельную поверхность. В промышленной аппаратуре чаще всего используются кольцевая насадка и дробленный кусковый материал.