Для накопления в среде ацетата в начале процесса устанавливают небольшие скорости загрузки биореактора, чтобы создать условия для утилизации и трансформации всех высших жирных кислот. Кроме того, в среде должны быть ионы кальция, которые способствуют флокуляции. При таких условиях в нижней части биореактора постепенно накапливаются гранулы величиной 0,5— 2,5 мм с хорошими седиментационными свойствами. В реакторе не должно быть механического перемешивания, чтобы не деформировать и не разрушить гранулы. В верхней части биореактора необходимо устанавливать сепарационное устройство, в котором гранулы отделяются от жидкой фазы и возвращаются в нижнюю часть аппарата. Кроме того, в сепарационном устройстве отделяется также газовая фаза. По такому же принципу созданы и эффективно работают биореакторы с верхним вводом потока и с толстым слоем шлама (биореактор UASB — UpflowAnaerobicSludgeBlanketReactor).
Схема такого биореактора приведена в табл. 10. В нижней части биореактора в слое высотой 1,5—2,5 м концентрация биомассы достигает 50—100 кг/м3; над этим слоем концентрация биомассы 5—20 кг/м3. В оптимальных условиях биореактор обеспечивает суточную загрузку ХПК до 15 кг/м3, полная замена субстрата происходит за 4 ч при степени очистки 70—90 %.
Таблица 10. Системы анаэробной очистки сточных вод
Биореактор | Принцип действия и конструкция | Схема |
Анаэробные лагуны Система отстойников, в Стони
которых стоки пребыва-IБиогаз Виозоз
ют от нескольких недель.T_i_i_i_ __ tM1Т,{]'илц?н-
7777Z
до 2 мес. газы свободно г..ъныеамю
выделяются в атмосферу
Продолжение
Биореактор | Принцип действия и конструкция | Схема | |
Двухступенчатый биореактор | Ферментационное пространство разделено на две части: в первой реализуется процесс биодеградации субстрата и ки- /-_. слотообразования, а во — | Виагаз | |
^_1 | |||
Нисяояю-7ки образоВа- | qj Метано- 5 генез s Hi з | ||
1 са |
Для анаэробного брожения стоков применяют различные биореакторы очень больших объемов, изготовленные из металла или железобетона, в виде вертикальных и горизонтальных цилиндров или прямоугольных резервуаров. В Китае, Индии и некоторых других странах Азии успешно используют небольшие биореакторы объемом до 10 м3 очень простой конструкции для утилизации отходов домашнего хозяйства. Количество таких биореакторов составляет более 10 млн. В развитых странах построено множество крупных биогазовых установок для очистки стоков промышленных предприятий и отходов ферм. Метановое брожение традиционно применяют при очистке городских стоков, для утилизации активного ила после аэробной ферментации.
В последнее время анаэробное метановое брожение применяют для детоксикации стоков. Установлено, что анаэробные бактерии деградируют не только углеводы, липиды, протеины, нуклеиновые кислоты, но и многие соединения нефтехимической промышленности, например бензольную кислоту.
4 С6Н5СООН + 18 Н20 - 15 СН4+ 13 СО2.
Адаптированные ассоциации анаэробов деградируют ацетальдегид, ацетон, бутанол, этилацетат, этилакрилат, глицерол, нитробензол, фенол, пропанол, пропиленгликоль, кретоновую, фумаровую и валериановую кислоты, винилацетат, парафины, синтетические полимеры и многие другие вещества и продукты.
Метановое брожение должно рассматриваться не только как средство защиты окружающей среды, но и как метод получения газообразного топлива, ценных органических удобрений и даже кормовых добавок. Так, в начале 60-х годов Институтом биохимии им. А. Н. Баха при участии Института микробиологии им. А. Кирхенштейна Латвии был создан метод получения концентрата витамина В12 путем метанового сбраживания мелассной барды спиртового производства. Витамин B12 содержится в биомассе бактерий метанового брожения.
В разделе об аэробных системах очистки стоков уже говорилось, что в городах, где за 1 сут сбрасывается 550 тыс. м3 стоков, успешно работают комбинированные системы, состоящие из 27 аэротенков объемов 39 000 м3 и 6 метантенков объемом 6500 м3 каждый. Метантенки работают в мезофильном режиме, длительность замены субстрата 17 сут. После метанового брожения биомасса отделяется и высушивается с использованием энергии биогаза. Сухой продукт, получаемый в количестве 280 т/сут, служит удобрением.
Финской фирмой «Тампелла» предложена рациональная система очистки стоков пищевых и бумажных заводов. Биореактор «Таман» сконструирован с учетом возможности реализации двухстадийного процесса (кислая и метаногенная стадии), причем на метаногенной стадии применяется гранулооб-разный шлам. Интенсификация метанообразования обеспечивается в результате выноса из зоны метаногенеза свежего субстрата с важными ингибиторами, а также наличия во второй зоне большой биомассы метанобразующих бактерий. Обе зоны могут быть размещены в одном вертикальном цилиндре, разделенном горизонтальной перегородкой на верхнюю зону объемом 300 м3 и нижнюю — 350 м . На молочном заводе, перерабатывающем за год 63 млн л молока и производящем 3000 т сыра, 2 тыс. т сливочного масла, 1,2 млн т мороженого и 17 млн л товарного молока, система очистки «Таман» обеспечивает хорошую очистку стоков.
Количество перерабатываемых стоков, м3/сут500
ХПК, т/сут1,3
БПКл, т/сут0,6
Взвешенные вещества, т/сут1,1
Температура, °С20
Редукция по БПКт, %> 80
Содержание метана в биогазе,% 70—74
На одном из заводов о/о «Алко» и бумажной фабрики в г. Аньяле (Финляндия) фирма «Тампелла» разработала систему очистки стоков, состоящую из анаэробной и аэробной частей. Завод производит крахмал, этанол и различные корма и за год перерабатывает около 140 тыс. т ячменя. Стоки завода сначала обрабатываются в нейтрализаторе, затем последовательно проходят усреднитель, две стадии метанового брожения, аэротенк и вторичный отстойник. Общая емкость метантенков 1350 м3, суточная производительность по стокам 2000 м3, в которых ХПК равен 10 т, БПКг — 6,7 т, количество взвешенных веществ 1 т. Процесс идет при мезофильном режиме (35— 40 °С), степень редукции по ВПК 95 %.
Метановое сбраживание отходов
Первые опыты в СССР по метановому сбраживанию жидких отходов были начаты в Латвии в специально сконструированном реакторе объёмом по 75 м3. Внутри реактора имеются перегородки, обеспечивающие лабиринтное движение субстрата и устраняющие случайный прямолинейный проход частиц навоза в аппарате. Режим работы термофильный (54 °С), средняя суточная замена субстрата в биореакторе 20 %. Навозные стоки загружают в емкость для свежего навоза, далее насосом — в емкость для предварительного нагрева, а затем перекачивают в биореактор.
Биогаз собирался в верхней части биореактора и в газгольдере, а оттуда по трубопроводу направляется в котел для сжигания в инжекционных горелках низкого давления. Подогретая в котле теплая вода поступает в бойлер, откуда часть расходуется для поддержания температуры в биореакторе, а часть направляется на обогрев помещений для животных. Сброженный субстрат вытесняется из биореактора н трактором вывозится для удобрения полей. Средний состав жидкого удобрения (в%): сухое вещество— 1,0—5,0, органические вещества — 0,25—4,2, фосфор — 0,05—0,7, азот —0,31 —1,14, рН 6,5—8,3. Жидкое органическое удобрение после метанового брожения проверено в опытных и полевых условиях. При этом доказано его высокое качество, особенно для поливки полей с многолетними травами. В этом случае урожай зеленой массы удваивается. Средние данные за 12 мес эксплуатации этой установки в совхозе «Огре» приведены ниже (В. С. Дубровские, 1987).
Выход биогаза с 1 м3 рабочего объема биореакто-2,55
ра, м3/сут
Выход биогаза из 1 кг сухого органического вешест- 0,448
ва, м3/сут
Содержание метана в биогазе, %64,8
Средняя загрузка органического вещества на 1 м35,69
рабочего объема реактора, кг/сут
Среднее выделение метана с 1 м3 рабочего объема1,65
биореактора, м3/сут
Максимальное выделение метана с 1 мл рабочего3,93
объема биореактора, м3/сут
Четырехлетний опыт работы этой установки показал перспективность термофильного метанового сбраживания отходов ферм, как экономически и экологически оправданного способа обезвреживания навоза. До 50 % энергии, полученной с биогазом, можно использовать в животноводческих комплексах, остальное количество расходуется на поддержание процесса.
На крупных животноводческих комплексах ферментирован-
Рис.8. Динамика образования газов на свалках в массе мусора: 1 — метан, 2 — диоксид углерода, 3— азот 4 — кислород, фазы: / — аэробная, // -- анаэробная, не образующая метана, /// — нарастающая анаэробная, метанобразующая, IV - стационарная анаэробная, метанобразующая |
Своеобразными компос-тами являются городские свалки. Толщина слоя мусора на городских свалках достигает 10 и даже 20 м. В городских отходах содержатся различные органические вещества,