Смекни!
smekni.com

Экологические проблемы атомных электростанций (стр. 2 из 5)

Еще один радиоактивный газ, не улавливаемый никакими фильтрами и в больших количествах производимый всякой АЭС, углерод-14. Есть основания предполагать, что накопление углерода-14 в атмосфере ведет к резкому замедлению роста деревьев. Такое необъяснимое замедление роста деревьев, по заключению ряда лесоводов, наблюдается, чуть ли не повсеместно на Земле. Сейчас в составе атмосферы количество углерода-14 увеличено на 25% по сравнению с до атомной эрой.

Но главная опасность от работающих АЭС - загрязнение биосферы плутонием. На Земле было не более 50 кг этого сверхтоксичного элемента до начала его производства человеком в 1941 году. Сейчас глобальное загрязнение плутонием принимает катастрофические размеры: атомные реакторы мира произвели уже много сотен тонн плутония – количество более чем достаточное для смертельного отравления всех живущих на планете людей. Плутоний крайне летуч: стоит пронести образец через комнату, как допустимое содержание плутония в воздухе будет превышено. У него низкая температура плавления – всего 640 градусов по Цельсию. Он способен к самовозгоранию при наличии кислорода.

Обычно, когда говорят о радиационном загрязнении, имеют в виду гамма-излучение, легко улавливаемое счетчиками Гейгера и дозиметрами на их основе. В то же время есть немало бета-излучателей (углерод-14, криптон-85, стронций-90, йод-129 и 130). Существующими массовыми приборами они измеряются недостаточно надежно. Еще труднее быстро и достоверно определять содержание плутония, поэтому если дозиметр не щелкает, это еще не означает радиационной безопасности, это говорит лишь о том, что нет опасного уровня гамма-радиации.

Наконец, важнейшей причиной экологической опасности ядерной энергетики и ядерной промышленности в целом является проблема радиоактивных отходов, которая так и остается нерешенной. На 424 гражданских ядерных энергетических реакторах, работающих во всем мире, ежегодно образуется большое количество низко-, средне- и высокорадиоактивных отходов. К этой проблеме отходов прямо примыкает проблема вывода выработавших свой ресурс реакторов.

Радиоактивное загрязнение сопровождает все звенья сложного хозяйства ядерной энергетики: добычу и переработку урана, работу АЭС, хранение и регенерацию топлива. Это делает атомную энергетику экологически безнадежно грязной. С каждым десятилетием открываются все новые опасности, связанные с работой АЭС. Есть все основания считать, что и далее будут выявляться новые данные об опасностях, исходящих от АЭС.

Оценка риска от АЭС

Риск есть вероятность причинения вреда. Количественно считать риск неблагоприятных последствий своих действий люди стали недавно, больше полагаясь на житейский опыт и интуицию.

Но при этом интуитивным, иррациональным остаётся восприятие риска – отношение людей и общества к риску. Восприятие риска связано не только с оценкой уровня риска, но зависит от многих других факторов: катастрофичности событий, знакомства людей с опасным явлением, пониманием явления простыми людьми, неопределённости последствий, контролируемости событий, добровольности принятия решений, воздействия на детей, обратимости событий, доверия к лицам, ответственным за риск, внимания СМИ, предшествующей истории, справедливости – равномерности распределения риска, пользы (выгоды) для рискующего, личной вовлечённости людей, происхождения риска (природный или от деятельности человека).

Простейший пример: гибель 33000 россиян в автомобильных авариях на дорогах страны в течение 2003 года воспринята населением без особых эмоций, но если бы гибель 33000 россиян произошла в один день 2003 года в одной аварии – отношение было бы совсем иное. С недавних пор надёжными количественными оценками риска заинтересовались страховые компании: сколько просить с нас за страховой полис, например, за полис автогражданки? Или сколько стоит страхование Балаковской АЭС от рисков аварий?

Доказательства безопасности – расчёты

Расчётные доказательства безопасности энергоблока строятся на исследовании поведения модели энергоблока или его основных частей в различных «расчётных» авариях. Заранее задаются критерии успешного завершения аварии – скажем, достижение устойчивого состояния при низких параметрах – температуре и давлении, при отсутствии расчётного повреждения топлива (т. е. расчётная температура топлива в процессе аварии не превысила критической отметки).

Есть расчётные модели особого рода, оперирующие не с параметрами, а с событиями, рассчитывающими не температуры и давления, а вероятности разных сложных событий. Соответственно, исходными данными служат вероятности простых событий – разных отказов оборудования или вероятности ошибок персонала.

Решения получаются в таком виде: если что-то на балаковском энергоблоке произойдёт, то с вероятностью примерно 99.989 % энергоблок будет безопасно остановлен, а с вероятностью 0.011 % топливо может быть повреждено.

Следует иметь в виду, что слова «если что-то произойдёт» означают какой-либо крупный отказ, требующий останова энергоблока, а такие события редки. Кроме того, повреждение топлива ещё не означает выхода радиоактивности в окружающую среду – топливо находится в реакторе с герметичным первым контуром, реактор расположен внутри специальной герметичной оболочки, препятствующей распространению радиоактивности наружу. И вероятность выхода радиоактивности в окружающую среду ещё в несколько раз ниже.

С учётом вероятности самого «если что-то произойдёт», для Балаковской АЭС рассчитаны риски причинения вреда имуществу (повреждение топлива и, возможно, оборудования), риски причинения вреда окружающей среде (выброс радиоактивности из-за повреждения топлива и прохода радиоактивности мимо гермооболочки), риски причинения прямого вреда жизни населения БМО (Балаковского муниципального образования).

Эти расчёты выполнялись специалистами двух московских институтов. При этом учитывались необходимые действия властей по защите населения.

Эти риски из-за их величины следует назвать остаточными. Они являются одними из немногих прямых количественных показателей безопасности АЭС.

Оценка "риска" в год для среднестатического жителя БМО

(Здесь приведена сравнительная характеристика усреднённых за 2000–2002 годы по фактическим данным «бытовых рисков» для жителей Балаковского муниципального образования (БМО) и прогноз «атомного риска» от Балаковской АЭС. Термины взяты в кавычки, поскольку это не строгое определение, а отношение числа летальных исходов за год к числу жителей БМО.)

Новообразования (спонтанный рак) - 0.0020

Туберкулёз - 0.00013

Несчастные случаи, всего - 0.0022

В том числе ДТП - 0.00019

Самоубийств - 0.00040

Убийств - 0.00035

Несчастных случаев с огнем - 0.00012

Утоплений - 0.00018

Отравлений алкоголем - 0.00014

"Атомный риск" - 0.00000002

Отсюда видно, в чём заключаются основные опасности нашей жизни.

В соответствии с нормами радиационной безопасности НРБ–99 (основанными на мировой практике) риск в одну миллионную считается приемлемым. У нас «атомный риск» ещё в 50 раз ниже.

Отсюда вывод: Балаковская АЭС удовлетворяет определению закона о техническом регулировании о безопасности – неприемлемый риск отсутствует.

Такого рода расчётам рисков посвящён так называемый вероятностный анализ безопасности – метод комплексной оценки безопасности. Комплексной – учитывающей всевозможные пути развития аварий, сопровождающихся отказами оборудования и ошибочными действиями людей.

Метод уже довольно широко применяется в атомной энергетике разных стран мира, особенно в США. Сегодня в России подобные методы начинают применяться и в оценке безопасности других производств – у нефтяников и химиков. Тем более что серьёзных оценок риска теперь требует закон.

Вероятностные модели объекта (например, энергоблока АЭС) и применяемые программные средства предоставляют много другой полезной информации.

Например, компьютер в считанные минуты даёт количественный ответ, как сильно влияет конкретный отказ оборудования или неправильное действие человека на риск повредить топливо в реакторе – можно сортировать отказы по важности и уделять больше внимания предупреждению важных отказов.

В США на многих АЭС учитывают в реальном времени, как влияют переключения в важных технологических системах на риск повредить топливо.

В соответствии с недавно утверждённой отраслевой программой работ на АЭС России тоже будет постепенно внедряться такой метод слежения за риском.

Оценка риска повредить топливо и риска упустить при этом радиоактивность в окружающую среду выполнена и для проекта достройки энергоблока № 5 Балаковской атомной станции.

Проектируемые изменения в системах безопасности в десять раз понизили риск. То есть на фоне четырёх энергоблоков пятый энергоблок не добавит в общий риск от АЭС практически ничего.

Здоровье в зоне АЭС

Недавно в отрасли стартовало интересное исследование - "Мониторинг состояния здоровья населения, проживающего в зоне наблюдения АЭС".

Его первые результаты, а также перспективы обсуждались на заседании Пятого научно-технического совета Минатома России ("Человек и экология в ядерно-топливном цикле. Проблемы ядерной и радиационной безопасности"). Отчетный доклад представили академик РАМН д.м. н. Л. А. Булдаков и к.м. н. П. В. Ижевский.

Мониторинг проводится в соответствии с Законом "О санитарно-эпидемиологическом благополучии населения" и приказом Федерального управления "Медико-биологических и экстремальных проблем", силами специалистов ГНЦ "Институт биофизики" на средства, выделяемые концерном "Росэнергоатом".

Принципы и методы мониторинга были разработаны на основе уникального опыта, накопленного в ГНЦ ИБФ, под методическим руководством академика РАМН Л. А. Ильина. Объект исследования - люди, проживающие рядом с атомными электростанциями в тридцатикилометровой зоне наблюдения. Смысл исследования - оценить, насколько влияет на их здоровье близость АЭС.