Смекни!
smekni.com

Мінеральні добрива в агроекосистемах та особливості їхнього впливу на довкілля (стр. 8 из 12)

За токсиколого-гігієнічними даними клас небезпечності СГА при інгаляційному впливі – III (за ЛК50 зона гострої дії – 20); при потраплянні в шлунок – III, при потраплянні на шкіряні покриви – IV (у великих концентраціях має подразнюючу іритивну дію).

Гумати амонію (натрію, калію), що входять до складу СГА, за останніми даними, належать до фізіологічно активних речовин, які у невисоких концентраціях (0,0001–0,05%) є стимуляторами росту рослин. Надходження їх у розчинному стані в рослинну клітину підсилює окисно-відновні процеси згідно з теорією Баха–Паладина– Сент–Д'єрді, що в результаті покращує умови живлення рослин і сприяє підвищенню рівня їхньої врожайності. Поряд з цим, встановлено здатність гуматів амонію, натрію, калію до комплексоутворення з іонами ВМ, у результаті чого утворюються малорозчинні продукти, що сприяє зниженню рухомості і, відповідно, небезпечності металів.

Україна має значні запаси бурого вугілля, цінність якого як енергетичної сировини, невисока, але можливі варіанти використання його в інших цілях, зокрема для отримання добрив гуматного типу. Однак, при цьому слід враховувати, що буре вугілля містить доволі високу кількість домішок, серед яких значне місце посідають ВМ.

Аналіз гуматів амонію, які використовують для одержання СГА, засвідчив присутність у складі добрива низки ВМ, які здебільшого знаходилися у незначних кількостях, за винятком Си, що дає можливість припустити наявність у гуматів певних фунгіцидних властивостей. Кількість Zn становила 12,5 мг/кг, Сu– 29,5, Ni– 11,0, Co– 1,0 мг/кг. ВМ, що містяться у СГА, мали різний ступінь рухомості: у розчин при екстракції 1,0 NHC1 найактивніше переходили Zn (близько 83%) і Си (близько 77%), нижчою активністю переходу характеризувалися Ni, Co і Pb. Враховуючи невисокий вміст гумінових речовин у СГА – 0,1–0,7%, надходження ВМ у ґрунт внаслідок застосування добрива не становитиме загрози.

СГА при надходженні у ґрунт швидко розчиняється (розчинність при 20° С – 75%) і вступає в обмінні реакції з катіонами твердої фази грунту. Значна частина катіонів NH4+з розчиненого у ґрунті добрива входить у ҐВК, а у розчин переходить еквівалентна кількість інших катіонів:

Са2+ NH4+

(ҐВК) + СГА = (ҐВК) NH4++ CaSO4

Са2+ Са2+

Процес біологічного окислення азоту СГА у ґрунті (нітрифікація) призводить до утворення азотної і вивільнення сірчаної кислот:

((NH4)2S04+C22H18O11) + 402 = 2HN03+ H2SO4+ 2Н2О + C22H18O11

У ґрунті азотна й сірчана кислоти нейтралізуються, вступаючи у взаємодію з бікарбонатами ґрунтового розчину та катіонами ҐВК:

2HNO3+ Са(НСО3)2 = Ca(NO3)2+ 2Н2О + 2О2

H2SO4+ Са(НСО3)2 = CaSO4+ 2Н2СО3

Нейтралізація мінеральних кислот супроводжується руйнацією бікарбонатів ґрунтового розчину і витісненням основ із вбирного комплексу воднем. Це послаблює буферну здатність ґрунту та підвищує його кислотність.

Внаслідок нітрифікації азот СҐА переходить у нітратну форму. Нітратний азот не поглинається колоїдами ґрунту, не утворює нерозчинних сполук і за певних умов може мігрувати вниз за профілем ґрунту і надходити у ґрунтові води агроландшафту.

Отже, при застосуванні СГА у грунті водночас проходитимуть різно-направлені процеси: підкислення ґрунтового розчину сприятиме підвищенню рухомості потенційно небезпечних ХЕ (алюмінію, ВМ, радіонуклідів тощо), а гумінові речовини, що входять до складу СГА, знижуватимуть рухомість полютантів у результаті утворення хелатних комплексів. Перевагу того чи іншого процесу визначатимуть особливості фунтових умов застосування СГА.

Агроекологічна оцінка СГА. За результатами проведених досліджень з вивчення впливу СГА на ґрунтову систему, а саме кислотно-основні властивості грунтів, радіальну міграцію аніонів і катіонів, показники біологічної активності, було проведено агроекологічну оцінку добрива з визначенням класу небезпечності за кожним показником

Таблиця 7. Агроекологічна оцінка СГА за показниками впливу на ґрунтову систему

Показник Величина показника Клас небез-печності
Зміна кислотно-основних властивостейґрунту
підвищення гідролітичної кислотності на мг-екв/100 г ґрунту 1,33 III
Активність радіальної міграції, Кс кратність
N03~ 7,4 І
SO42- 1,8 III
Cd 0,8 IV
Pb 0,3 IV
Zn 0,6 IV
Cu 0,3 IV
Co 0,8 IV
Ni 2,1 III
Вплив на біологічну активність ґрунту
зниження активності пероксидази, % 18,1 III
зниження активності процесів нітрифікації, % 18,6 III
час відновлення активності процесів нітрифікації, міс. >6 I

Найбільш «вузьким місцем» при застосуванні СГА виявилася підвищена можливість радіальної міграції нітратного азоту, що може створювати загрозу якості природних вод. Це вимагає введення певних обмежень при застосуванні СГА на грунтах легкого механічного складу та з промивним гідрологічним режимом зволоження.

Потребує уваги питання впливу СГА на кислотно-лужні властивості ґрунту: тривале його використання (близько 20 років) на ґрунтах з низькою буферною здатністю може призвести до критичного підвищення рівня актуальної і потенційної кислотності. Технологія застосування СГА має передбачати обов'язкове внесення у грунт меліорантів, здатних нейтралізувати кислотність добрива.

Максимально недіючою дозою щодо біологічної активності ґрунту можна вважати дозу СГА N60кг/га, яка не спричиняє зниження активності пероксидази (найчутливішого індикаторного показника серед тих, що вивчали) більш ніж на 10%. Застосування СГА у рекомендованій дозі – N90, не спричиняє значного зниження активності біологічних процесів у ґрунті (IIIклас небезпечності), але при цьому відбувається депресивний ефект у часі, що при тривалому застосуванні добрива може призвести до зміни функціонально-структурної організації біоценозу ґрунту.

5. Екотоксикологічні, гідрохімічні та агрохімічні методи оцінки мінеральних добрив

Узагальнення результатів багатьох наукових досліджень дає змогу виділити основні негативні ефекти, що виникають при застосуванні мінеральних добрив: забруднення верхніх шарів ґрунту потенційно небезпечними ВМ, галогенами, радіонуклідами тощо; зміна кислотно-основних властивостей грунту при застосуванні мінеральних добрив; вплив на біологічну активність ґрунту; активізація процесів міграції токсичних і біогенних елементів у горизонтальному та вертикальному напрямах. Зміни, що відбуваються у ґрунті, спричиняють певні порушення у суміжних компонентах агроекосистеми. Через ґрунт мінеральні добрива опосередковано впливають на фізіологічні процеси у рослинах, що стає причиною погіршення їхньої гігієнічної якості. Вони також активізують процеси міграції, що призводить до погіршення якості ґрунтових вод, а також вод наземних водоймищ із впливом на екотоксикологічний стан водних екосистем.

Характер впливу мінеральних добрив на агроекосистеми, передусім, зумовлений їхнім хімічним складом, що, у свою чергу, залежить від особливостей сировини та промислових технологій виробництва.

Мінеральні добрива є джерелом надходження багатьох хімічних елементів (ХЕ) та сполук у довкілля. При їхній оцінці слід враховувати як адитивні впливи окремих складових мінеральних добрив на ґрунтову систему, так і їхню сумарну дію.

Сумарну дію складових мінеральних добрив на ґрунтову систему оцінюють за біологічними індикаційними тестами.

В основі класифікації мінеральних добрив лежить структура показників, яка враховує їхній вплив на екотоксикологічний, агрохімічний, гідрохімічний стан агроекосистеми. Екотоксикологічна оцінка екзогенних хімічних сполук у природному середовищі базується на працях відомих вчених у галузі токсикології – Є. Гончарука, М. Соколова та ін.; екологічна оцінка стану ґрунтів – на розробках ННЦ «Інститут ґрунтознавства та агрохімії ім. О. Н. Соколовського».

У межах визначених показників мінеральні добрива поділяють на 4 класи небезпечності (згідно з рекомендаціями ВООЗ щодо поділу хімічних речовин): І – високонебезпечні; II– небезпечні; III– помірно небезпечні; IV– малонебезпечні. Діапазон показників у межах класів небезпечності визначають за існуючими українськими і міжнародними нормативами (табл. 8).

Таблиця 8. Класифікація мінеральних добрив за показниками впливу на ґрунтову систему

Критерій Клас небезпечності
1 II III IV
Перевищення фонового вмісту (елементи 1 – IIкласу небезпечності), кратність >6 5-6 3–4 <2
Перевищення ГДК (елементи 1 – IIкласу небезпечності, рухомі форми), кратність > 10,0 2,1–10,0 1,1-2,0 < 1,0
Час досягнення критичної концентрації – Тк, роки < 10 10-30 31–100 > 100
Зміна кислотно-основних показників
ґрунту
підвищення кислотності на одиниці рН >2,5 2,5-1,0 0,9-0,5 < 0,5
підвищення лужності на одиниці рН > 1,3 1,3-0,8 0,7-0,3 < 0,3
рНкс, підвищення на одиниці рН > 1,5 1,5–1,0 0,9-0,5 < 0,5
гідролітична кислотність підвищення на мг-екв/100 г ґрунту >4,0 4,0–2,0 1,9-1,0 < 1,0
Активність радіальної міграції
Кс, кратність >5,0 3,0–5,0 1,1–2,9 < 1,0
швидкість, см/3 міс. >50 50–21 20–10 <10
Вплив на біологічну активність
ґрунту
зниження чисельності (активності), % 51-100 26-50 10-25 < 10
час відновлення, міс. >6 3-6 1–2 < 1

Розроблена класифікація мінеральних добрив дає можливість провести їхню агроекологічну оцінку, визначити можливі негативні впливи і вчасно ввести обмеження на використання у сільськогосподарському виробництві добрив, які не відповідають певним екологічним нормативам.