Смекни!
smekni.com

Компьютерное моделирование в экологии (стр. 4 из 4)

Важным фактором баланса роста клеток являются затраты энергии на их поддержание. Эти затраты складываются из расходов на повторный синтез нестабильных макромолекул и клеточных структур, на поддержание градиентов веществ между клеткой и окружающей средой, а также между компартментами клетки, на подвижность клеток (если они ею обладают), процесс сброса избыточной энергии, поступающей в клетки (Минкевич и др., 1998). Удельная скорость затрат энергии на поддержание

зависит от вида микроорганизмов, субстрата, температуры, возможно, и от других факторов. Влияние концентраций ингибирующих субстратов этанола и цинка на величину
клеток этанолассимилирующих дрожжей Candida valida изучалось в работе И.Г.Минкевича с соавторами. В результате исследования были получены формулы для скорости потребления энергетического субстрата qS и удельной скорости роста
, которые отражают качественные особенности влияния данных субстратов на рост культуры – лимитирования, существования наклонного плато и субстратного ингибирования:

Член

, описывающий влияние этанола, имеет вид

член

, описывающий влияние цинка на скорость потребления энергетического субстрата qS , записывают как

Влияние концентрации цинка в окружении клеток на удельную скорость затрат энергии на

описывают выражениями

В приведенных формулах CZn обозначает внешнюю концентрацию цинка, CZn1 и CZn2 – внутреннюю концентрацию цинка, S – концентрацию этанола;

– максимальный выход роста; b – константа;
– физиологические параметры культуры Candida valida.

Предлагаемая модель обеспечивает высокую степень соответствия экспериментальным данным и объясняет многие особенности поведения культуры. По мнению авторов, описанные зависимости могут применяться ко многим органическим и минеральным субстратам, в том числе обладающим токсическим действием на микроорганизмы.[4]

Заключение

Таким образом, ситуация сосуществования видов возможна только, когда точка (
) лежит в секторе II. На плоскости
область значений L1 и L2, при которых виды могут сосуществовать, задается сектором с вершиной в точке (
) и сторонами, параллельными сторонам сектора II (рис. ).

Рис.

В области x1, x2 сосуществуют два вида. L1, L2 – общие запасы питательных веществ

В итоге, можно выделить 12 различных способов заполнения плоскости биогенов (три варианта принадлежности точки (

) одному из секторов, каждый из которых делится на четыре по положению значений
на оси L1 и
на оси L2). Причем, кроме случаев, когда области доминирования прилегают друг к другу, существуют варианты наложений различных исходов (в этой ситуации результат зависит от начального значения биомасс), а также разрывы, внутри которых происходят колебания.

Безусловно, можно сказать, что привлечение компьютеров существенно раздвинуло границы моделирования экологических процессов. С одной стороны, появилась возможность всесторонней реализации сложных математических моделей, не допускающих аналитического исследования, с другой – возникли принципиально новые направления, и, прежде всего, – имитационное моделирование.

Список литературы:

1. Бигон М., Харпер Дж., Таусенд К. Экология: В 2 т. М.: Мир, 1989.

2. Бродский А.К. Краткий курс общей экологии. СПб.: Изд-во СПбГУ, 1992.

3. В.П.Зайцева, А.В.Паялов. В помощь учителю. Мурманск, 1999

4. Хованов Н.В. Биометрия. СПб., 1994.

5. Гублер Е.В. Вычислительные методы анализа и распознавания патологических процессов. М.: Медицина, 1978.

6. Акоев И.Г., Максимов Г.К., Малышев В.М. Лучевое поражение млекопитающих и статистическое моделирование. М., 1972.


[1] Хованов Н.В. Биометрия. СПб., 1994, 54 с.; Бигон М., Харпер Дж., Таусенд К. Экология: В 2 т. М.: Мир, 1989, 2 т. 87 с.

[2]Бродский А.К. Краткий курс общей экологии. СПб.: Изд-во СПбГУ, 1992., 96 с.

1. Бигон М., Харпер Дж., Таусенд К. Экология: В 2 т. М.: Мир, 1989, 1 т. 76 с.

[3]Бродский А.К. Краткий курс общей экологии. СПб.: Изд-во СПбГУ, 1992., с 23

[4] Бродский А.К. Краткий курс общей экологии. СПб.: Изд-во СпбГУ, 1992, с 103