Смекни!
smekni.com

Локалізація екологічної загрози забруднення атмосфери від пилу спалювання вугілля на ТЕС (стр. 4 из 6)

У п’ятому розділі наведено результати порівняльних досліджень новостворених пиловловлювачів, підкреслено їх переваги та кращі показники за ефективністю пиловловлення та гідравлічним опором у порівнянні з еталоном (циклон ЦН-11). Статистичне моделювання аналітичної залежності ефективності пиловловлення від конструктивних розмірів і режимів роботи пиловловлювача та оцінка значущості впливу вхідних факторів (довжина секції циліндричної частини для циліндричних та циліндрично-конічних апаратів, кут нахилу стінки апарата для конічних апаратів, медіанний діаметр частинки, витрати повітря тощо) на ефективність пиловловлювання апарата виконано з використанням обчислювальної техніки.

Переваги запропонованих пиловловлювачів за ефективністю пиловловлення та гідравлічним опором у порівнянні з еталоном (циклон ЦН-11) пояснюється конструктивними особливостями як корпуса апарата, так і жалюзійного відокремлювача, які визначаються з умови мінімальної турбулізації потоку, збереження постійними швидкості руху пилоповітряної суміші в корпусі апарата і при проходженні через жалюзі відокремлювача, та зменшення впливу вторинного вихору з бункера пиловловлювача. Найменша ефективність роботи із запропонованих апаратів спостерігається у конічного відцентрово-інерційного пиловловлювача з циліндричним жалюзійним відокремлювачем без дна, але при цьому вона перевищує ефективність кращого з існуючих апаратів сухого очищення повітря - циклону ЦН-11.

При порівнянні одержаних експериментальних даних з результатами чисельних експериментів спостерігається деяка відмінність у процесі визначення довжини циліндричної частини для циліндричного та циліндрично-конічного пиловловлювачів, що пояснюється тим, що будь-яка модель (модель “ідеального“ середовища, модель взаємодії сил в такому середовищі, рух “ідеальної“ матеріальної точки в уявленому потоці) є дещо ідеалізованою. Для одержання числових значень вводяться початкові (граничні) умови, тобто умови однозначності, та ряд припущень. Можливості фізичного моделювання обмежені дуже вузькими діапазонами змін величин, які визначаються в дослідах. При виведенні математичної моделі знехтували рядом факторів, вплив яких не може бути врахований в диференційних рівняннях руху, а саме вплив нестаціонарності відносного руху частинки на її траєкторію, взаємодію між частинками, вплив маси частинок на потік, вплив турбулентності потоку на рух частинок тощо. Крім того, було зроблено припущення, що при дотику до зовнішньої стінки апарату частинка вважається вже вловленою, більше не відбивається і рухається вздовж зовнішньої стінки апарата у напрямку до пиловипускного патрубку. В реальних умовах відбувається відбиття частинки від зовнішньої стінки апарату, ії подальший рух в закручених потоках та неодноразове відбиття від стінок апарата. В подальшому планується визначити залежність конструктивних параметрів пиловловлювача із врахуванням деяких факторів, вплив яких не можливо було прослідкувати в даній роботі.

Для оцінки значущості впливу вхідних факторів (довжина секції циліндричної частини для циліндричних та циліндрично-конічних апаратів, кут нахилу стінки апарата для конічних апаратів, медіанний діаметр частинки, витрати повітря тощо) на ефективність пиловловлювання апарата було застосовано метод статистичного моделювання аналітичної залежності ефективності пиловловлення від конструктивних розмірів і режимів роботи пиловловлювача, заснований на регресійному аналізі вхідних та вихідних даних.

Проведення регресійного аналізу передбачає значного обсягу обчислень з використанням обчислювальної техніки та відповідного програмного забезпечення. На основі наведеного методу статистичного моделювання використовуючи інтегроване середовище Borland C++ 4.5 була створена програма MNK, яка визначає коефіцієнти рівняння регресії, залишкову дисперсію, дисперсію відтворення, величину критерію Фішера та значення критерію Стьюдента для всіх коефіцієнтів рівняння регресії. За розрахунками одержуємо рівняння регресії досліджуваних процесів, що наведені в таблиці 1.

Таблиця 1 -

Рівняння регресії досліджуваних процесів

Назва пило-вловлювача Жалюзійний відокремлювач Рівняння регресії досліджуваних процесів
1 2 3
Циліндричний з дном Y = 90,625 + 9,97145∙10-5∙X1 + 0,178219∙X2 – 0,000715421∙X3
Циліндрично-конічний Конічний з дном Y = 87,5132 + 0,00223838∙X1 + 0,198721∙X2 – 0,000569829∙X3
Циліндричний без дна Y = 89,8448 + 0,000960825∙X1 + 0,185764∙X2 – 0,000812001∙X3
Циліндричний з дном Y = 90,1276 – 0,000489599∙X1 + 0,189983∙X2 – 0,000718423∙X3
Циліндричний Конічний з дном Y = 88,0433 + 0,00314209∙X1 + 0,176066∙X2 – 0,00139099∙X3
Циліндричний Циліндричний без дна Y = 87,4178 + 0,00280143∙X1 + 0,186059∙X2 – 0,00100576∙X3
Циліндричний з дном Y = 87,9933 - 0,114988∙X1 + 0,227385∙X2 – 0,216686∙10-3∙X3
Конічний Конічний з дном Y = 88,3087 – 0,103801∙X1 + 0,216949∙X2 – 0,78297∙10-5∙X3
Циліндричний без дна Y = 86.9399 – 0,104198∙X1 + 0,213002∙X2 + 4.97187∙10-5∙X3
ЦН-11 - Y = 83,1709 + 0,0848919∙X2 + 0,0017504∙X3

У рівняннях: X1 - довжина секції циліндричної частини для циліндричних та циліндрично-конічних апаратів (10-3 м) або кут нахилу стінки апарата для конічних апаратів (градус, 0), X2 - медіанний діаметр частинки (10-6 м), X3 - витрати повітря (м3/год); Y - ефективність пиловловлювання апарата (%).

За допомогою одержаних рівнянь регресії визначені значення ефективності пиловловлювання для кожного досліджуваного пиловловлювача при відповідній зміні конструктивних розмірів і режимів роботи пиловловлювача. Відхилення розрахункових даних від експериментальних не перевищує 6 %.

У шостому розділі наведено результати впровадження розроблених установок для котельних. За даними результатів розсіювання забруднюючої речовини (зола вугільна) в атмосферному повітрі проведена оцінка впливу викидів забруднюючої речовини на стан забруднення атмосферного повітря для кожного населеного пункту, в якому розташовані досліджувані джерела викидів. Результати розрахунку i аналіз карт розсіювання шкідливих речовин в приземному шарі атмосферного повітря показали, що для всіх джерел викиду, які обладнані золовловлювачами ЦН-11, виявлено перевищення ГДК для золи вугільної ТЕС. У випадку джерел викиду, що обладнані розробленими золовловлювачами, перевищень ГДК не спостерігається в жодному населеному пункті.

Оцінка впливу викидів забруднюючих речовин на стан забруднення атмосферного повітря здійснювалась за даними результатів розрахунків розсіювання забруднюючих речовин в атмосферному повітрі (“Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий (ОНД-86)”, Ленинград, Гидрометеоиздат, 1987). Аналіз одержаних результатів розрахунків розсіювання забруднюючих речовин в атмосферному повітрі проводився на ЕОМ за допомогою програми ЕОЛ – 2000, погодженою Мінприроди України (5185/18-10 від 22.05.2003). Розрахунок розсіювання шкідливих речовин в атмосферному повітрі виконано для кожного майданчика в розрахункових прямокутниках з розміром сторін 2000 м на 2000 м та кроком розрахункової сітки 100 м. Шкідливою речовиною в даному випадку є зола вугільна ТЕС (максимально разова граничнодопустима концентрація становить 0,05 мг/м3).

Під час проведення розрахунків розсіювання були враховані такі особливості, як кліматичні характеристики кожного населеного пункту, в яких розташовані джерела забруднення, а саме середня температура самого теплого місяця року, середня температура самого холодного місяця року, швидкість вітру, повторюваність якої протягом року складає більше 5%, регіональний коефіцієнт атмосферної стратифікації (стійкості) та ймовірність повторень напрямків вітрів за 8-ми румбовою розою вітрів; фонове забруднення атмосферного повітря кожного населеного пункту, в якому розташовані джерела викидів, для золи вугільною ТЕС (оскільки інструментальні спостереження для цієї речовини в даних населених пунктах не ведуться, то фонове забруднення приймаємо 0,4 частки ГДК для даної речовини).

Результати розрахунку i аналіз карт розсіювання шкідливих речовин в приземному шарі атмосферного повітря показали, що для всіх джерел викиду, які обладнані золовловлювачами ЦН-11, виявлено перевищення ГДК для золи вугільної ТЕС (максимальні концентрації: м. Хмельницький (для 1-го золовловлювача) - 2,137 ГДК; м. Хмельницький (для 4-х золовловлювачів) - 1,368 ГДК; м Кривий Ріг (для 6-и золовловлювачів) - 2,549 ГДК), тоді як при обладнані розробленими золовловлювачами, перевищень ГДК не спостерігається в жодному населеному пункті. Для існуючого золовловлюючого обладнання та створених і впроваджених золовловлювачів побудовані карти розсіювання золи вугільної на території підприємств, де працюють котельні (рис. 4 - для котельні № 1 ВАТ “ТЕМП” м. Хмельницький.).

1. Продуктивність 3000 м3/год - в котельні № 1 ВАТ “ТЕМП” м. Хмельницький. Ефективність пиловловлення золовловлювача становить94,8 %, 95,9 %, 97,5 % в порівнянні з циклоном ЦН-11 93,7 %, 94,5 %, 95,1 % при витратах повітря 1000, 2000, 3000 м3/год відповідно.

2. Продуктивність 16000 м3/год - в котельні № 2 ВАТ “ТЕМП” м. Хмельницький - батарея з 4 апаратів продуктивністю 4000 м3/год кожний. Ефективність цієї установки 97,3 % (при використанні ЦН-11 - 95,4 %).

3. Продуктивність 36000 м3/год - в котельні ТзОВ “ДЕЛКОН ЛТД” м. Кривий Ріг (батарея з шести золовловлювачів продуктивністю 6000 м3/год). Ефективність цієї установки 95,7 % (при використанні ЦН-11 - 93,8 %).