Всегда можно предположить, что некоторые источники некорректности в конкретном случае не важны, и соответствующим образом упростить план эксперимента и его процедур. Это сэкономит значительный объем работы. Однако сущность управляемого эксперимента в том, что правомерность его заключений не зависит от соответствия таких предположений объективной реальности.
От последнего источника некорректности в списке таблицы план эксперимента не может быть защищен. Значение сверхъестественного и несверхъестественного вмешательства будет кратко пояснено ниже.
Таблица
Потенциальные источники некорректностей в эксперименте и средства минимизации их влияния
Источник некорректности | Черты плана эксперимента, снижающие или исключающие некорректность | |
1 | Изменения во времени | Контрольные измерения |
2 | Влияние процедур реализации эксперимента | Контрольные измерения |
3 | Отклонения, вносимые экспериментатором | Случайное соотнесение уровней воздействия экспериментальным единицам Рандомизация при проведении всех процедур "Слепой" тест* |
4 | Изменчивость, вносимая экспериментатором (случайные ошибки) | Повторности воздействий |
5 | Исходная внутренняя изменчивость экспериментальных единиц | Повторности воздействий Перемешивание воздействий Сопутствующие наблюдения |
6 | Вмешательство | Повторности воздействий Перемешивание воздействий |
"Контроль" – это термин, имеющий несколько значений в контексте планирования эксперимента. В таблице он употребляется в наиболее традиционном значении, т.е. как любая выборка измерений, с которой сравниваются другие выборки, получившие воздействие. Контрольным воздействием может быть как нижний или нулевой уровень фактора, изучаемого в эксперименте, так и "процедурное" воздействие (например, мыши с введенным солевым раствором используются в качестве контроля по отношению к мышам с введенным солевым раствором и лекарственным препаратом), или просто иное воздействие.
По крайней мере, при экспериментировании с биологическими системами контроль необходим, в первую очередь, вследствие того, что биологические системы меняются со временем. Если бы мы могли быть абсолютно уверены, что данная система обладает постоянными свойствами, тогда не было бы необходимости в отдельной контрольной группе. Измерения на экспериментальной единице до воздействия могли бы служить тогда контролем для измерений на экспериментальной единице после воздействия.
Во многих типах экспериментов контрольные измерения имеют вторую функцию: выделить влияние эффекта в числе прочих различных аспектов экспериментальной процедуры. Так, в примере с мышами воздействие "только солевым раствором" представляется обязательным контролем. При некоторых обстоятельствах могут быть полезными дополнительные контрольные воздействия, такие как "только введение иглы" или "отсутствие манипуляций".
Более широкое и, возможно, более полезное (хотя и менее традиционное) определение "контроля" включает все обязательные атрибуты плана, приведенные рядом с "источниками недоразумений" под номерами 1 - 6 (таблица). "Контроль" в строгом смысле отслеживает дрейф во времени и влияние технических процедур реализации эксперимента. Рандомизация компенсирует (т.е. снижает или исключает) потенциальные отклонения, вносимые экспериментатором при назначении воздействий экспериментальным единицам и при осуществлении других процедурных действий. Повторности учитывают стохастический фактор, т.е. внутреннюю изменчивость выборок, присущую экспериментальному материалу или внесенную экспериментатором, либо возникшую вследствие несверхъестественного вмешательства. Перемешивание компенсирует регулярную пространственную неоднородность свойств среды, куда помещаются экспериментальные единицы, обусловленную как ее исходным состоянием, так и возможным несверхъестественным вмешательством.
В этом контексте представляется точным утверждение о том, что эксперимент без повторностей – это эксперимент без контроля, поскольку он не учитывает стохастический фактор. Однако обычай разделять повторность и контроль как отдельные аспекты плана эксперимента настолько прочно утвердился, что термин "контроль" будет далее использоваться только в узком традиционном смысле.
Третье значение контроля в экспериментальном контексте состоит в регуляции условий, в которых проводится эксперимент. Это может относиться к гомогенности экспериментальных единиц, к точности конкретных процедур воздействия, или, что наиболее часто, к учету неоднородности физической среды, в которой проводится эксперимент. Так, некоторые исследователи могут говорить об эксперименте, поставленном на белых мышах в лаборатории при температуре 25±1ºC, как о "лучше контролируемом" по сравнению с экспериментом, поставленном на диких мышах в поле, где температура меняется от 15º до 30º. Это – неудачное выражение, потому что "чистота" контрольных воздействий в эксперименте не зависит от той степени, с которой физические условия среды ограничиваются или регулируются. От такой регуляции также не зависят ни обоснованность эксперимента, ни результаты статистического анализа; если нет ошибок в плане или статистическом анализе, то доверие, с которым мы можем отбросить нуль-гипотезу, отражается исключительно значением р-вероятности. Эти факты мало понимаются многими лабораторными учеными.
Неверный смысл, который вкладывается в понятие контроль, частично происходит от ошибочного толкования древней максимы: “Сохраняй постоянными все переменные, за исключением той, которая подлежит изучению”. Она относится не к временной стабильности, которая, в общем, не имеет значения, а только к желательной идентичности экспериментальных и контрольных систем во всех отношениях, за исключением воздействующей переменной и производимой ею эффекта.
Повторности, рандомизация и независимость. Как повторности, так и рандомизация имеют две функции в эксперименте: они улучшают оценку базовых статистик и повышают обоснованность применения статистических критериев. В таблице подразумевается их роль в оценке статистических параметров выборок. Повторности снижают эффекты "шума" (т.е. случайной изменчивости или ошибки), увеличивая, таким образом, точность оценки, например, выборочного среднего или различий между двумя выборками. Рандомизация компенсирует возможные возмущения, вносимые экспериментатором, увеличивая правильность оценок.
Каким именно путем рандомизированное распределение уровней воздействий по экспериментальным единицам обеспечивает обоснованность эксперимента? Четкий и краткий ответ встречается нечасто. Рандомизация гарантирует “гораздо больше, чем просто отсутствие отклонений в эксперименте”, хотя и это важно. Она гарантирует, что в среднем "ошибки" распределены независимо и что “пары участков с одинаковым воздействием расположены не ближе друг к другу, или, наоборот, дальше, или еще каким-либо разумным образом неотличимы от любой другой пары участков с различным воздействием”, за единственным исключением эффекта самого воздействия. В терминах математической статистики отсутствие независимости ошибок препятствует выяснению α-вероятности ошибки первого рода. Действуя в соответствии с процедурой проверки статистических гипотез, мы можем, например, задаться критическим уровнем значимости αкр = 0.05 и искать соответствующее значение р-вероятности для подходящей тест-статистики. Однако, если ошибки не независимы, истинный уровень значимости будет выше или ниже 0.05, но в любом случае численное его значение останется неизвестным. Таким образом, интерпретация статистического анализа становится достаточно субъективной.
Под вмешательством понимается вмешательство случайных событий в текущий эксперимент. Этот тип вмешательства встречается в любой экспериментальной работе, внося "шум" в данные. Чаще всего влияние единичного стохастического возмущения неизмеримо мало. Однако по определению, природа, величина и частота таких случайных событий непредсказуемы, так же как и их следствия. Если возмущение оказывает воздействие на все экспериментальные единицы независимо от уровня воздействия, то проблемы нет. Любое изменение погоды во время полевого эксперимента будет примером такого "случайного" события. Больше проблем несут случайные события, влияющие на одну или несколько экспериментальных единиц. Экспериментальное животное может умереть, может случиться инфекция или сбой в обогревательной системе. Некоторые случайные события могут быть обнаружены, но таковых – не большинство. Экспериментаторы обычно стремятся минимизировать появление случайных событий, потому, что они снижают чувствительность эксперимента в обнаружении эффекта воздействия. Однако не менее важно минимизировать вероятность ошибочного заключения о присутствии эффекта воздействия, когда его нет. Повторности и перемешивание воздействий обеспечивают лучшую страховку от случайных событий, имитирующих такие фальшивые эффекты воздействия. (См. 13.)
Заключение
Нами рассмотрена тема: «Применение эксперимента в экологии». Для решения поставленных во введении задач в первой главе мы рассмотрели специфику эмпирических исследований; во второй главе мы проанализировали понятие «эксперимент в экологии»; в третьей главе показали виды экспериментов в экологии. Рассмотрим итоги нашей работы.
Научное исследование начинается со сбора, систематизации и обобщения фактов. Эмпирический опыт никогда – тем более в современной науке – не бывает слепым: он планируется, конструируется теорией, факты всегда теоретически нагружены. Поэтому исходный пункт науки – это не сами по себе предметы, не голые факты, а теоретические схемы.