Метод абсорбції базується на розділенні газоповітряної суміші на складові частини шляхом поглинання шкідливих компонентів абсорбентом. В якості абсорбентів вибирають рідини, здатні поглинати шкідливі домішки. Для видалення з викидів аміаку, хлористого та фтористого водню використовується вода. Один кілограм води здатен розчинити сотні грамів хлористого водню та аміаку. Сірчисті гази у воді розчиняються погано, тому витрата води у цьому випадку дуже велика. Для видалення з викидів ароматичних вуглеводнів, водяної пари та інших речовин застосовується сірчана кислота. Для здійснення процесу очищення газових викидів методом абсорбції застосовуються плівкові, форсункові, трубчасті апарати – абсорбери [9].
Метод хемосорбції базується на поглинанні газів та пари твердими поглиначами з утворенням хімічних сполук. Цей метод використовується при очищенні викидів через вентиляції гальванічних дільниць. При цьому розчинником для очищення викидів від хлористого водню є розчин їдкого натру. Цей метод використовується також для очищення викидів від окисів азоту.
Метод адсорбції базується на селективному вилученні з газових сумішей шкідливих домішок за допомогою твердих адсорбентів. Найбільш широко як адсорбент застосовується активоване вугілля, іонообмінні смоли та ін.
Геометричні параметри адсорбента вибираються та розраховуються номограмами або за аналітичними залежностями.
Каталітичний метод базується на перетворенні токсичних компонентів викидів у менш токсичні або нешкідливі за рахунок використає каталізаторів.
В якості каталізаторів використовують платину, метали платинового ряду, окиси міді, двоокис марганцю, п'ятиокис ванадію тощо. Каталітичний метол використовується для очищення викидів від окису вуглецю за рахунок його окислення до двоокису вуглецю [7].
Термічний метод базується на допалюванні та термічній нейтралізації шкідливих речовин у викидах.
Цей метод використовується тоді, коли шкідливі домішки у викидах піддаються спаленню. Термічний метод ефективний у випадку очищення викидів від лакофарбових та просочувальних дільниць. Системи термічного та вогневого знешкодження забезпечують ефективність очищення до 99 %.
Загалом послідовність вибору типу очисних пристроїв та фільтрів така:
— виявлення характеристик викидів (температура, вологість, вид та концентрація домішок, токсичність, дисперсність тощо);
— визначення типу очисного пристрою або фільтра за витратою газу, необхідним ступенем очищення, можливостями виробництва та іншими факторами;
— знаходження робочої швидкості газів;
— техніко-економічний аналіз можливих варіантів очищення;
— розрахунок параметрів очисного пристрою;
— проектування та вибір очисного пристрою або фільтра.
При виборі засобів очищення викидів в атмосферу слід керуватися такими рекомендаціями:
— сухі механічні способи та пристрої не ефективні при видаленні дрібнодисперсного та липкого пилу;
— мокрі методи не ефективні при очищенні викидів, в котрих містяться речовини, що погано злипаються і утворюють грудки;
— електроосаджувачі не ефективні у випадку видалення забруднень з малим питомим опором і котрі погано заряджаються електрикою;
— рукавні фільтри не ефективні для очищення викидів з липкими та зволоженими забрудненнями;
— мокрі скрубери не можна застосовувати для роботи поза приміщеннями в зимових умовах.
Організаційні заходи зводяться до попередження скидання стічних вод у водойми без їх очищення. Технічні заходи передбачають очищення стічних вод різними методами, повторне використання стічних вод для технічних потреб та поливу, створення обортних та замкнених систем водокористування, вдосконалення технологічних процесів на підприємствах у напрямку зменшення надходження забруднень у стоки, перехід на безвідходні технології, змешення забруднення територій нафтопродуктами, котрі зі зливовими стоками можуть потрапляти до водойм [11].
Очищення стічних вод на підприємствах може здійснюватися за однією з таких схем:
— очищення стічних вод на заводських очисних спорудах;
— очищення стічних вод після їхнього забруднення на заводських, а потім на міських очисних спорудах з подальшим спуском у водойми;
— безперервне очищення промислових вод та розчинів на локальних очисних спорудах протягом певного часу, після чого вони передаються на регенерацію, після регенерації повертаються в оборот та лише після з'ясування неможливості регенерації усереднюються і передаються на заводські очисні споруди та утилізуються. Способи очищення забруднених промислових вод можна об'єднати в такі групи: механічні, фізичні, фізико-механічні, хімічні, фізико-хімічні, біологічні, комплексні (рис. 1).
Рис. 1. Основні способи очистки води
Механічні способи очищення застосовуються для очищення стоків від твердих та масляних забруднень. Механічне очищення здійснюється одним з таких методів:
- подрібнення великих за розміром забруднень у менші за допомогою механічних пристроїв;
- відстоювання забруднень зі стоків за допомогою нафтовловлювачів, пісковловлювачів та інших відстійників;
— розділення води та забруднювачів за допомогою центрифуг та гідроциклонів;
— усереднення стоків чистою водою з метою зниження концентрації шкідливих речовин та домішок до рівня, при котрому стоки можна скидати у водойми або в каналізацію;
— вилучення механічних домішок за допомогою елеваторів, решіток, скребків та інших пристроїв;
— фільтрування стоків через сітки, сита, спеціальні фільтри, а найчастіше — шляхом пропускання їх через пісок;
— освітлення води шляхом пропускання її через пісок або спеціальні пристрої, наповнені композиціями або мінералами, здатними поглинати завислі частки.
Вибір схеми очищення води від завислих часток та нафтопродуктів залежить від виду та кількості забруднень, необхідного ступеня очищення.
Фізико-механічні способи очищення стоків та води базуються на флотації, мембранних методах очищення, азотропній відгонці [11].
Флотація — процес молекулярного прилипання частинок забруднень до поверхні розподілу двох фаз (вода — повітря, вода — тверда речовина). Процес очищення СПАР, нафтопродуктів, волокнистих матеріалів флотацією полягає в утворенні системи "частинки забруднень - бульбашки повітря", що спливає на поверхню та утилізується. За принципом дії флотаційні установки класифікуються таким чином:
— флотація з механічним диспергуванням повітря;
— флотація з подачею повітря через пористі матеріали;
— електрофлотація;
— біологічна флотація.
Зворотний осмос (гіперфільтрація) — процес фільтрування стічних вод через напівпроникні мембрани під тиском. При концентрації солей 2—5 г/л повинен бути тиск до 1 МПа, а при концентрації солей 10-30 г/л — близько 10 МПа.
Ультрафільтрація — мембранний процес розподілу розчинів, осмотичний тиск котрих малий. Застосовується для очищення стічних вод від високомолекулярних речовин, завислих частинок та колоїдів.
Електродіаліз — процес сепарації іонів солей в мембранному апараті, котрий здійснюється під впливом постійного електричного струму. Електродіаліз застосовується для демінералізації стічних вод. Основним обладнанням є електродіалізатори, що складаються з катіонітових та аніонітових мембран.
Хімічне очищення використовується як самостійний метод або як попередній перед фізико-хімічним та біологічним очищенням. Його використовують для зниження корозійної активності стічних вод, видалення з них важких металів, очищення стоків гальванічних дільниць, для окислення сірководню та органічних речовин, для дезинфекції води та її знебарвлення [8].
Нейтралізація застосовується для очищення стоків гальванічних, травильних та інших виробництв, де застосовуються кислоти та луги. Нейтралізація здійснюється шляхом змішування кислих стічних вод з лугами, додаванням до стічних вод реагентів (вапно, карбонати кальцію та магнію, аміак тощо) або фільтруванням через нейтралізуючі матеріали (вапно, доломіт, магнезит, крейда, вапняк тощо).
Окислення застосовується для знезараження стічних вод від токсичних домішок (мідь, цинк, сірководень, сульфіди), а також від органічних сполук. Окислювачами с хлор, озон, кисень, хлорне вапно, гіпохлорид кальцію тощо.
Розглянемо фізико-хімічні методи.
Коагуляція — процес з'єднання дрібних частинок забруднювачів в більші за допомогою коагулянтів. Для позитивно заряджених частинок коагулюючими іонами є аніони, а для негативно заряджених — катіони. Коагулянтами є вапняне молоко, солі алюмінію, заліза, магнію, цинку, сірчанокислого кальцію, вуглекислого газу тощо. Коагулююча здатність солей тривалентних металів в десятки разів вища, ніж двовалентних і в тисячу разів більша, ніж одновалентних.
Флокуляція — процес агрегації дрібних частинок забруднювачів у воді за рахунок утворення містків між ними та молекулами флокулянтів. Флокулянтами є активна кремнієва кислота, ефіри, крохмаль, целюлоза, синтетичні органічні полімери (поліакриламід, поліоксиетилен, поліакрилати, поліетиленаміни тощо) [8].
Для освітлення води одночасно використовуються коагулянти та флокулянти, наприклад, сірчанокислий алюміній та поліакриламід ППА. Коагуляція та флокуляція здійснюються у спеціальних ємностях та камерах.
При очищенні води використовується і електрокоагуляція — процес укрупнення частинок забруднювачів під дією постійного електричного струму.
Сорбція — процес поглинання забруднень твердими та рідкими сорбентами (активованим вугіллям, золою, дрібним коксом, торфом, селікагелем, активною глиною тощо). Адсорбційні властивості сорбентів залежать від структури пор, їхньої величини, розподілу за розмірами, природи утворення. Активність сорбентів характеризується кількістю забруднень, що поглинаються на одиницю їхнього об'єму або маси (кг/м3).