Смекни!
smekni.com

Скруббер Дойля (стр. 3 из 4)

Таблица 1

Техническая характеристика скруббера Дойля

Вид пыли Запыленность, г/м3 Эффективность очистки, % Расход воды, м3/ч на 100 м3 газа
на входе на выходе
Зола 23,1 0,342 98,4 4,0
Свинцовый агломерат (от дробилок) 1,91 0,0071 99,6 0,8
Свинцовый агломерат (от сушильных печей) 4,75 0,101 97,9 1,36
Фосфорит 17,5 0,468 97,4 1,92
Уголь 4,4 0,06335 98,6 1,36

Процесс каплеобразования с скруббере ударного действия можно представить следующим образом: под динамическим воздействием газового потока на поверхности жидкости образуется впадина. Форму впадины можно представить в виде усеченного конуса.

Каплеобразование в скруббере ударного действия происходит под действием аэродинамических сил обратной струи газа, движущейся вдоль поверхности впадины. На границе раздела жидкость – обратная струя в результате пульсаций и искривления поверхности из нее вытягиваются жидкие нити. Под действием поверхностного натяжения нити распадаются на отдельные капли, сохраняющие направление движения обратной струи. Размер и количество капель зависят от скорости обратной струи газа и величины поверхности контакта обратной струи газа с жидкостью.

Каплеобразование происходит с боковой поверхности впадины, где наблюдается интенсивное перемешивание. На нижней поверхности впадины перемешивание практически не происходит вследствие торможения газового потока.

В конечном счете, каплеобразование в скруббере ударного действия определяется скоростью газа на выходе из сопла, его диаметром и зазором между кромкой сопла и поверхностью жидкости. [3]

4. Влияние отдельных факторов на эффективность улавливания пыли в скруббере ударного действия

Работа мокрых пылеуловителей характеризуется такими показателями, как эффективность очистки, скорость газа и производительность аппарата (по газу), гидравлическое сопротивление, расход энергии, расход воды, затраты на газоочистную установку, стоимость очистки газов. [1]

Как известно, принцип работы скруббера ударного действия заключается в следующем: запыленный газовый поток с высокой скорость выходит из сопла, ударяется о свободную поверхность жидкости, изменяет направление движения на 1800, проходит в пространство над жижкостью и выбрасывается в атмосферу.

Осаждение пыли в скруббере ударного действия происходит в результате совместного действия ряда механизмов улавливания, значение которых определяется крупностью частиц. Один из основных механизмов – инерционное осаждение. При изменении направления газового потока частицы пыли под действием сил инерции смещаются с линий тока. Стремясь сохранить первоначальное направление движения, они выпадают из потока, ударяясь о зеркало жидкости и ею удерживаются.

На эффективность инерционного осаждения влияют : скорость газа на выходе из сопла, размер и плотность частиц пыли, плотность газа, диаметр выходного отверстия сопла.

По результатам многих исследователей инерционное осаждение характеризуется критерием подобия – числом Стокса.

, (1)

где

- характерная скорость газового потока на выходе из сопла, м/с;

- диаметр частицы, м;

- плотность частицы, кг/м3;

- динамический коэффициент вязкости газа, кг/(мс)

DC – диаметр отверстия сопла, м.

Минимальный диаметр частиц, которые не улавливаются при инерционном осаждении, составляет менее 1 мкм.

В месте удара газового потока о свободную поверхность жидкости создается турбулентный слой. Степень турбулизации слоя зависит от скорости газа на выходе из сопла. Жидкость и газ находятся в состоянии интенсивного перемешивания. Над бурлящей поверхностью жидкости находится область капель с частицами пыли, не уловленными при инерционном ударе. Основной характеристикой данного механизма является число Рейнольдса.

, (2)

где

- плотность газа, кг/м3.

Коэффициент улавливания может быть выражен в функции безразмерных параметров (критериев):

. (3)

Эффективность улавливания увеличивается с ростом числа St. С увеличением Re, характеризующего степень турбулизации газового потока, эффективность улавливания возрастает.

Увеличение скорости газа на выходе из сопла повышает эффективность осаждения (соответственно уменьшает остаточную запыленность), поскольку при это повышается и инерционный параметр St, и параметр режима движения Re.

С ростом скорости газа на выходе из сопла увеличивается гадравлическое сопротивление аппарата и энергозатраты на очистку газа.

Мельчайште частицы пыли (менее 0,2 мкм) могут улавливаться в результате молекулярной диффузии (броуновского движения). Такие частицы могут улавливаться жидкостью на всем пути потока. Эффект улавливания благодаря этому механизму уменьшается с повышением скорости потока и увеличением размера частиц пыли.

На эффективность улавливания скруббера ударного действия влияют также форма сопла, в котором идет ускорение газового потока и частиц пыли, и зазор между кромкой сопла и зеркалом жидкости. [2]

Для увеличения эффективности улавливания пыли в существующих аппаратах целесообразно усилить смачиваемую способность орошающей воды. Смачивающая способность воды может быть увеличена засчет прибавления к ней поверхностно-активных веществ (ПАВ), оптимальная концентрация которых обычно составляет 0,1 – 0,2%. Несмотря на вполне положительные результаты, полученные при испытании смачивателей, указывающие на то, что их добавки к воде при соблюдении оптимальных условий снижают остаточную запыленность, все же в большинстве случаев не удается достичь ожидаемой степени пылеулавливания.

Эффективность пылеулавливающего действия растворов ПАВ в слабой степени зависит от минералогического состава пыли (независимо от их смачиваемости в статистических условиях), так же как и от дисперсности, включая и высокодисперсную фракцию в 5 мкм и ниже, которая, однако, улавливается значительно хуже других.

Для правильного решения вопроса по увеличению к.п.д. (степени очистки газов) мокрых пылеуловителей необходимо выявить причины недостаточной эффективности контакта частиц пыли с жидкостью при прохождении пылегазового потока в аппарате.

Исследованиями по улавливанию гидрофобной и гидрофильной пыли с помощью жидкости (воды и растворов ПАВ) установлено, что заметное влияние плохой смачиваемости пыли на эффективность ее влияния сказывается лишь на частицы размером <5 мкм, а для частиц пыли крупностью >5 мкм смачиваемость значения не имеет.

Эффективность работы мокрых пылеуловителей зависит также от влажности очищаемых газов. Находящаяся в газах влага адсорбируется на поверхности частиц, образуя слой жидкости, и проникает внутрь пылевой частицы. При этов взвешенная в газе частица укрупняется и утяжеляется, что облегчает ее последующее осаждение в аппарате.

При наличии в газах взвешенных частиц происходит конденсация водяных паров в объеме. Необходимым условием конденсации в объеме является пересыщение пара, т.е. конденсация начинается при определенном критическом пересыщении.

В перенасыщенном водяными парами воздухе пылевые частицы при объемной конденсации значительно утяжеляются, происходит конденсационный рост частиц, так как они являются ядрами конденсации.

Перенасыщение воздуха водяными парами осуществляется в основном засчет охлаждения насыщенного водяными парами воздуха или засчет ввода пара в уже насыщенный водяными парами воздух.

Основными направлениями по увеличению степени очистки газов и воздуха надо считать:

- повышение тонкости распыления жидкости и увеличение количества капель в контактных устройствах аппаратов мокрого пылеулавливания;

- увеличение разности скоростей капель и частиц пыли в зоне их контакта;

- конденсационное укрупнение мелких частиц пыли. [1]

5. Эксплуатация скрубберов

Трудности в эксплуатации мокрых пылеуловителей возникают в связи с выносом брызг воды или другой промывной жидкости из аппаратов, а также в связи с образованием отложений на внутренней поверхности аппаратов в процессе взаимодействия пыли с жидкостью. Такие же осложнения наблюдаются и в газоходах за аппаратами газоочистки, и на роторах вентиляторов и дымососов, что приводит к зарастанию газоходов и к разбалансировке тягодутьевых машин. Для борьбы с выносом брызг следует соблюдать оптимальный режим работы аппаратов и предусматривать специальные брызго- и каплеуловители. Для борьбы с отложениями аппараты промывают и механическим путем снимают с их поверхности налипшие материалы. В последнее время для защиты от отложений применяют синтетические покрытия аппаратов и машин. В частности, в американской практике лопатки вентиляторов и дымососов покрывают тефлоном, т.к. он прочен и дает возможность наносить его на лопасти любой формы.