Смекни!
smekni.com

Обеспечение экологической безопасности путем разработки малоотходного способа реутилизации сернокислых отходов аккумуляторных батарей (стр. 2 из 5)

В ИОНХ АН УССР совместно с Институтом газа АН УССР разработан непрерывный способ получения сернокислого алюминия из каолинов (рис. 1.1 )Сущность технологического процесса заключается в том, из каолина и раствора сернокислого алюминия готовится пульпа влажностью 50-55%, которая поступает на грануляцию в аппарат кипящего слоя при температуре 200-230 С. В грануляторе наряду с гранулированием происходит удаление свободной влаги и частичное обезвоживание сернокислого алюминия, подаваемого с промывными водами. Из гранулятора гранулы ячейковым питателм подаются на обжиг в печь кипящего слоя при температуре 560-580 С. Обожженные гранулы охлаждаются воздухом в холодильнике кипящего слоя и выгружаются в приемный бункер. Воздух после холодильника соединяется с дымовыми газами гранулятора и очищается в циклоне и мокром скруббере. Дымовые газы после обжиговой печи очищаются в циклоне, промывной башне и волокнистом фильтре.

Охлажденные обожженные гранулы подаются на противоточную экстракцию раствором серной кислоты при температуре 100-110 С в барабанный аппарат непрерывного действия, изготовленный из стали ЭИ-943. Навстречу движущимся гранулам непрерывно поступает концентририванная серная кислота ( 93% ) и вода. Вода промывает прореагировавшие гранулы и разбавляет серную кислоту, поступающую на взаимодействие с каолином. Выгрузка прореагировавших гранул происходит с противоположного конца от загрузки обожженного каолина. Таким образом, в одном аппарате одновременно и непрерывно осуществляется взаимодействие каолинита с серной кислотой, промывка и отделение сиштофа. Степень извлечения оксида алюминия в раствор составляет 88-92%.Концентрированный раствор сернокислого алюминия с содержанием 12-13% AL2O3 и до 4% нерастворимого остатка подвергают контрольной фильтрации через слой прореагировавших гранул в присутствии флокулянта ПАА в количестве 18 г/м3 раствора.Осветленный раствор сернокислого алюминия поступает на грануляционное обезвоживание в аппарате кипящего слоя при температуре 180-200 С. После гранулятора получают сернокислый алюминий с содержанием 22-26% AL2O3.

Пыль AL2(SO4)3, уловленная в циклонах, частично поступает на приготовление пульпы, а большей частью подвергается грануляции на тарельчатом грануляторе. Сиштоф после сушки используют в качестве кристаллизационного компонента при получении цемента. Добавка кристаллизационного компонента значительно повышает прочность и придает специальные свойства кальциевым цементам, являющимся основным строительным материалом в народном хозяйстве.

Рисунок 1.1— Принципиальная схема непрерывного способа получения гранулированного сернокислого алюминия из каолинов


К преимуществам этого метода следует отнести :

1. упрощение подготовки сырья ( исключаются размол, сушка ); приготовление пульпы позволяет подать в обжиговую печь со стабильными физико-химическими свойствами, что не требует постоянного вмешательства в работу обжиговых печей; улучшаются санитарно-гигиенические условия труда, так как уменьшается запыленность подготовительного отделения;

2. применение для приготовления пульпы в качестве связующего раствора сернокислого алюминия позволяет получить гранулы с большой прочностью. Это уменьшает пылеунос в процессе грануляционного спекания из аппаратов кипящего слоя, позволяет осуществить процесс в барабанном противоточном аппарате непрерывного действия;

3. грануляция и обжиг в аппаратах кипящего слоя позволяют одновременно с выгрузкой осуществить сепарацию гранул, таким образом, направлять на экстракцию материал постоянного гранулометрического состава;

4. сернокислая экстракция в барабанном аппарате непрерывного действия совмещена с промывкой и отделением кремнеземистого шлама — сиштофа. Непрерывная подача реагентов и малая длительность процесса позволяют достичь относительно высокой степени извлечения оксида алюминия в раствор ( более 80%);

5. осуществление обезвоживания и грануляции концентрированных растворов сернокислого алюминия в аппарате кипящего слоя позволяет получать частично обезвоженный гранулированный неслеживающийся продукт с высоким содержанием основного компонента —AL2(SO4)3 (22-26%);

6. значительное сокращение производственной площади;

7. весь процесс непрерывен и может быть автоматизирован.

К числу недочетов следует отнести необходимость упаривания воды каолинивой пульпы, что сопряжено с повышенными тепловыми затратами. Однако осуществить грануляцию и даже пластификацию каолинов невозможно. Применяя печи кипящего слоя удается значительно сократить расход тепла по сравнению с кольцевыми печами.

Интересными представляются направления совершенствования технологии переработки каолинов технической серной кислоты отходами производстваю Так, предлагается использовать отработанные тревильные растворы после окисления Fe2+ в Fe3+ продувкой воздухом направляют на втоклавное разложение при температуре 100-300 С и давлении 7-350 атм. В результате реакции обмена получают в растворе сульфат алюминия и в осадке — Fe(OH)3 и SiO2. После фильтрации раствор сульфата алюминия, содержащий примеси FeSO4, обрабатывают каменным углем или пропускают сернистый ангидрид в присутствии 40-47%-ной H2SO4, осаждая из раствора FeSO4.7H2O. При охлаждении раствора кристаллизуют AL2(SO4)3.16—18H2O высокой чистоты.

Из рассмотренных ранее способов получения сульфата алюминия следует, что в большинстве из них не решен вопрос глубокой очистки растворов от железа. Между тем в настоящее время в ряде производств к сернокислому алюминию предъявляются жесткие требования по содержанию железа. Сущность способа получения сернокислого алюминия высокой чистоты (рис. 1.2 ) в том, что каолин смешивают с серной кислотой в количестве около 20% и промывной водой 2%. Пульпу подвергают грануляционному спеканию при температуре 200-230 С и обжигу при 560-580 С в печах кипящего слоя. Обожженные гранулы разлагаются в барабанных аппаратах противоточного типа непрерывного действия. Слив поступает на контрольную фильтрацию и затем на восстановление сульфата трехвалентного железа до двухвалентного алюминиевой стужкой при 98-100 С. Из сернокислого раствора в автоклавах кристаллизуют водородный алунит при 230 С в течение 1ч в присутствии восстановленного водородного алунита, который подается в количестве 60-65% от имеющегося в растворе глинозема. Восстановительный обжиг проводят при 560-580 С. В качестве восстановителя могут использовать конвертированный природный газ, генераторный газ, пары солярного масла, сера и др. Химизм процесса можно представить суммарной реакцией:

H2[AL2(SO4)4(OH)12] + 4CO 3AL2O3 +7H2O + 4SO2 + 4CO2 .

Рисунок 1.2 — Принципиальная технологическая схема производства сернокислого алюминия высокой чистоты из каолинов.

При восстановительном обжиге содержание активного AL2O3 возрастает на 33% , а возврат безводного сернокислого алюминия на кристаллизацию водородного алунита полностью исключается.

При автоклавном гидролизе осуществляется полный вывод оксида алюминия в твердую фазу в виде водородного алунита. В маточном растворе остается сульфат двухвалентного железа, который отделяется фильтрованием . Это позволяет исключить из технологического передела операции обезжелезивания обожженным каолином, фильтрацию и промывку железистого шлама. В результате потери глинозема в процессе обезжелезивания отсутствуют, упрощается аппаратурное оформление, сокращается количество промывных вод.

Водородный алунит промывают водой. Промывная вода1 поступает большей частью на промывку сиштофа, а также на приготовление пульпы. Отмытый водородный алунит разлагают серной кислотой в стехиометрияеском количестве с получением сернокислого алюминия. Для сульфатизации используют раствор серной кислоты такой концентрации, чтобы получить раствор концентрацией до 15% AL2O3, который можно было бы подавать непосредственно на кристаллизацию товарного AL2(SO4)3.

Водородный алунит может выдаваться в виде полупродукта. Он обладает лучшими транспортабельными свойствами, чем 18-водный сернокислый алюминий.

В процессе сульфатизации извлечение глинозема в раствор 90-92%. Из раствора кристаллизуют водородный алунит следующего химического состава, % : 39,8 AL2O3; 42,4 SO3; 17,8H2O; 0,001-0,003 Fe2O3. Из этого полупродукта получали сернокислый алюминий, в котором содержалось 0,0005-0,001% Fe2O3.

Из сопоставления этого способа с ранее известными видно, что он имеет ряд преимуществ, которые заключаются в следующем :

1. из технологического процесса исключены операции обезжелезивания каолином, контрольной фильтрации, промывки железистого шлама;

2. кристаллизация водородного алунита проводится в присутствии восстановленного продукта гидролиза, что позволяет при одном и том же расходе его увеличить долю активного AL2O3 на 33 % ;

3. в процессе автоклавного гидролиза достигается полный вывод алюминия из раствора, что позволяет удалить железо из процесса, а также уменьшить грузопотоки на стадиях грануляционное спекание — кристаллизация;