Смекни!
smekni.com

Оценка экологического состояния вод Сестрорецкого водохранилища и реки Малая сестра по гидробиологическим показателям (стр. 2 из 8)

Цель гидробиологии может быть определена как понимание экологических процессов, происходящих в водной среде, и управление ими с целью оптимизации управления водными ресурсами.

Основной задачей гидробиологии является изучение экологических процессов в гидросфере в интересах ее освоения и оптимизации взаимодействия человеческого общества с водными экосистемами.

Гидробиология решает следующие главные теоретические задачи:

• изучение общих внутренних закономерностей структурно- функциональной организации водных экосистем, которые и определяют круговорот вещества и поток энергии в них;

• исследование зависимостей круговоротов вещества и потоков энергии от факторов внешней среды, в том числе и антропогенных.

Конкретные практические задачи гидробиологии:

1. Повышение биологической продуктивности водоемов для получения из них наибольшего количества биологического сырья.

2. Разработка биологических основ обеспечения людей чистой водой, в том числе оптимизация функционирования экосистем, создаваемых для промышленной очистки питьевых и сточных вод.

3. Экспертная оценка экологических последствий зарегулирования, перераспределения и переброски стока рек, антропогенного изменения гидрологического режима озер и морей.

4. Оценка вновь создаваемых промышленных, сельскохозяйственных и других предприятий для водных экосистем с целью охраны последних от недопустимых повреждений.

5. Мониторинг состояния водных экосистем.

Главным методом гидробиологии, как и остальных экологических дисциплин, является системный подход, т.е. рассмотрение экосистемы как целого, и количественный учет протекающих в ней потоков энергии, вещества и информации. Следовательно, гидробиология всегда оперирует величинами численности организмов, биомассы – массы организмов, и их продукции - прироста органического вещества (в единице объема воды, под единицей площади водоема, на единице площади его дна).

Для количественного учета используют различные приборы как специфически гидробиологические – дночерпатели, драги, планктонные сети, планктоночерпатели, батометры различных конструкций, так и многие приборы заимствованные из арсеналов гидрохимии, гидрофизики, гидрологии. В последнее время часто используются погружные и дистанционные биофизические приборы. Тем не менее, одним из главных методов гидробиологии остается эколого-географический метод, т.е., наблюдения в природе.

4. ОСНОВНЫЕ НАПРАВЛЕНИЯ ГИДРОБИОЛОГИИ

Общая гидробиология изучает экологические процессы в водоемах и водотоках. В ней выделяются:

• системная гидробиология;

• трофологическая гидробиология;

• энергетическая гидробиология;

• этологическая гидробиология;

• палеогидробиология;

• бентология;

• планктология.

Системная гидробиология – приложение общей теории систем и ее методов в водной экологии. Она занимается общими проблемами организации биосистем в гидросфере, их поведением, самоорганизацией и самоуправлением, моделированием водных биосистем, прогнозу их состояния при различных внешних воздействиях.

По изучаемым процессам различаются трофологическая гидробиология – пищевые связи, биологическая трансформация веществ, энергетическая гидробиология – поток энергии, ее биологическая трансформация, этологическая гидробиология – поведение гидробионтов, палеогидробиология – исторические изменения водных экосистем.

По локализации изучаемых процессов в общей гидробиологии можно выделить бентологию и планктологию. Первая занимается экологическими процессами, проходящими на дне водоемов и водотоков, вторая – в толще вод. Частная гидробиология изучает специфику экологии водных объектов разного типа. Выделяют гидробиологии морей, озер, прудов, болот, луж, временных и пересыхающих водоемов и др. То же происходит и для водотоков: гидробиологии рек различных типов, ручьев. Кроме того, существует гидробиология подземных и пещерных вод, гидробиологии полярных и тропических водоемов, субтропических водоемов и озер умеренного пояса.

Прикладная гидробиология, как это следует из самого её названия, занимается прикладными приложениями результатов общей или теоретической гидробиологии. В нее входят:

• Продукционная гидробиология, изучающая биологические основы продуктивности водоемов (например, повышения вылова рыбы, урожая морепродуктов и т.п.).

• Санитарная гидробиология, занимающаяся решением проблем чистой воды, самоочищения водоемов.

• Медицинская гидробиология, исследующая происхождение и распространение болезней, связанных с водой (в первую очередь – инфекционных). Ее подразделом является гидропаразитология, разрабатывающая методы борьбы с паразитическими животными, обитающими в водоемах, в том числе личиночными стадиями паразитов.

• Токсикологическая гидробиология или водная токсикология, изучающая возможность вреда продуктов техногенеза для водных объектов, в частности, влияние токсикантов на гидробионтов и экосистемные процессы.

• Радиологическая гидробиология, решающая вопросы, связанные с поступлением в водоемы радионуклидов, влиянием их на гидробионтов, накоплением их в трофических цепях.

• Техническая гидробиология, изучающая биологические явления, представляющие опасность для техники, контактирующей с водой (биокоррозия, обрастания и т.п.). Частным случаем ее можно считать навигационную гидробиологию, которая исследует водные биологические процессы, препятствующие судоходству.

5. ИСТОРИЯ РАЗВИТИЯ ГИДРОБИОЛОГИИ

Еще до возникновения гидробиологии как науки началось накопление фактов, составляющих ее научный багаж. Можно отметить следующие заметные события этого процесса:

• 1650 г. Б. Варениус выделил четыре типа озер по присутствию или отсутствию притоков и поверхностного стока.

• 1674 г. Антуан ван Левенгук описал микроскопическую водоросль спирогиру, некоторые особенности динамики водорослей в озерах, влияние на нее ветра.

• 1730 г. де Дулье описал и измерил сейши.

• 1780 г. Соссюр описал тепловую стратификацию озер1.

• 1810г. Сэр Джон Лесли изучил формирование физической структуры водного тела некоторых шотландских озер под воздействием поступления света и тепла, ветра, температуры воды.

• 1819 г. Де ла Беш описал металимнион (термоклин)2 в Женевском озере.

• 1826 г. Де Кандолль выполнил первое научное описание цветения водорослей в озере.

• 1845 г. Й. Мюллер описал планктон.

Начиная с середины XIX в. гидробиология начинает оформляться в самостоятельную науку. Ничто не происходит само по себе и, естественно, науки о жизни вод потребовали какие-то практические потребности человечества. Первая из них – забота о хлебе насущном. Иллюзия неиссякаемости рога изобилия – промысла продуктов океана рассеялась: произошло снижение промысла устриц и мидий, уловы рыбы уменьшились, китобойный промысел стал сокращаться. Возникла необходимость реально оценивать запасы объектов промысла, особенности их воспроизводства и возможность искусственного разведения. Вторая – опасность жажды. Угроза загрязнения источников питьевой воды – пресных водоемов благодаря развитию промышленности, сельского хозяйства, транспорта, росту населения стала реальной. Стало нужно понять механизмы самоочищения природных вод.

6.ИНТЕГРАЛЬНЫЕ КРИТЕРИИ: ОЦЕНКА КАЧЕСТВА ЭКОСИСТЕМ ПО НЕСКОЛЬКИМ ПОКАЗАТЕЛЯМ

При оценке состояния экосистем исследователи обычно используют не один, а несколько (иногда 7-8) методов из тех, что описаны выше. Если все они дают одинаковую картину (что бывает редко), то уверенность в правильности оценки возрастает. Если же наблюдается некоторый разнобой оценок, то причина этого часто может заключаться в том, что какой-либо метод оказывается слишком чувствительным к факторам, не связанным с загрязнениями. Для обобщения данных и выражения конечной оценки одним числом по определенным правилам строят комбинированный показатель.

Е. В. Балушкиной разработан интегральный показатель, включающий предложенный ею ранее хирономидный индекс, индекс сапротоксобности Яковлева и индексы Вудивисса и Гуднайта - Уитли. Он используется для оценки состояния экосистем водоемов, подверженных смешанному органическому и токсическому загрязнению, и апробирован в системе Ладожское озеро – р. Нева - восточная часть Финского залива.

При оценке состояния донных сообществ ряда рек, озер и водохранилищ России для количественной характеристики состояния бентоса автор использовал следующие показатели: 1) численность (Ч), экз./м2; 2) биомасса (Б), г/м2; 3) число видов (S); 4) видовое разнообразие (H), бит/экз.; 5) олигохетный индекс Пареле (ОИП), равный отношению численности олигохет-тубифицид к общей численности бентоса, %; 6) среднюю сапробность (СС), рассчитываемую как средневзвешенная сапробность трех первых доминирующих по численности видов бентосных организмов.

Для объединения значений первых четырех показателей и замене их одним числом предложен «комбинированный индекс состояния сообщества» (КИСС) (6.1), находимый по обычной методике расчета интегральных ранговых показателей. Вначале все станции ранжируются по каждому показателю, причем ранг 1 присваивается максимальным значениям Ч, Б, H и S. Если на нескольких станциях значения какого-либо показателя были одинаковыми, то они характеризовались одним средним рангом. Индекс отражает состояние сообщества сразу по четырем показателям, поэтому он назван “комбинированным индексом состояния сообщества”.

КИСС = (2Б + Ч + H + S)/5. (6.1)

Подчеркнем, что в эту формулу входят не абсолютные значения показателей, а их ранги. Биомассе придан «вес», равный 2, поскольку с ней связана величина потока энергии, проходящей через сообщество, что чрезвычайно важно для оценки его состояния. Чем меньше величина КИСС, тем лучше состояние сообщества.