Смекни!
smekni.com

Антропогенний вплив на довкілля (стр. 4 из 7)


В якості каталізаторів використовують платину, метали платинового ряду, окиси міді, двоокис марганцю, п'ятиокис ванадію тощо.

Каталітичний метод використовується для очищення викидів від окису вуглецю за рахунок його окислення до двоокису вуглецю.

Термічний метод базується на допалюванні та термічній нейтралізації шкідливих речовин у викидах.

Цей метод використовується тоді, коли шкідливі домішки у викидах піддаються спаленню. Термічний метод ефективний у випадку очищення викидів від лакофарбових та просочувальних дільниць. Системи термічного та вогневого знешкодження забезпечують ефективність очищення до 99 %.

Загалом послідовність вибору типу очисних пристроїв та фільтрів така:

— виявлення характеристик викидів (температура, вологість, вид та концентрація домішок, токсичність, дисперсність тощо);

— визначення типу очисного пристрою або фільтра за витратою газу, необхідним ступенем очищення, можливостями виробництва та іншими факторами;

— знаходження робочої швидкості газів;

— техніко-економічний аналіз можливих варіантів очищення;

— розрахунок параметрів очисного пристрою;

— проектування та вибір очисного пристрою або фільтра. При виборі засобів очищення викидів в атмосферу слід

керуватися такими рекомендаціями:

сухі механічні способи та пристрої не ефективні при видаленні дрібнодисперсного та липкого пилу;

— мокрі методи не ефективні при очищенні викидів, в котрих містяться речовини, що погано злипаються і утворюють грудки;

— електроосаджувачі не ефективні у випадку видалення забруднень з малим питомим опором і котрі погано заряджаються електрикою;

— рукавні фільтри не ефективні для очищення викидів з липкими та зволоженими забрудненнями;

— мокрі скрубери не можна застосовувати для роботи поза приміщеннями в зимових умовах.

Зниження забруднення атмосфери вихлопними газами від двигунів внутрішнього згоряння

У викидах двигунів внутрішнього згоряння (ДВЗ) міститься понад 100 шкідливих сполук, котрі умовно можна поділити на шість груп:

— діоксид вуглецю, водяна пара, водень, кисень;

— оксид вуглецю;

— окиси азоту;

— вуглеводні;

— альдегіди;

— сажа.

При використанні в ДВЗ етилованих бензинів з вихлопними газами в атмосферу викидаються сполуки свинцю.

При згорянні 1 тонни бензину в атмосферу викидається, кг: оксидів вуглецю — 39,5; вуглеводнів — 34; окисів азоту — 20; діоксид у сірки — 1,55; альдегідів — 0,93. При згорянні 1 тонни дизельного пального в атмосферу викидається, кг: оксиду вуглецю — 21; вуглеводнів — 20, окисів азоту — 34; альдегідів — 6,8; сажі — 2.

Масовий склад викидів значною мірою залежить від режимів експлуатації та справності систем ДВЗ і своєчасності проведення регулювань.

На збільшення витрати пального та шкідливих речовин у вихлопних газах карбюраторних двигунів найістотніше впливають зношеність жиклерів карбюратора, порушення регулювання системи холостого ходу та регулювання рівня пального в карбюраторі, зношеність деталей прискорювального насоса, підвищення гідравлічного опору повітряного фільтра, неправильна установка запалювання, неправильна величина зазору в контактах переривача та їхнього забруднення, нагар на свічках запалювання, знижена температура охолоджувальної рідини, зношеність деталей кривошипно-шутунного механізму, порушення регулювання між клапанами та штовханами тощо.

Згадані несправності збільшують витрату пального на 10 %, а кількість шкідливих речовин у викидах — на 15—50 %.

У дизельних ДВЗ на збільшення витрати пального та складу вихлопних газів впливають наступні несправності: зменшення тиску вприскування, покриття голки форсунки смолистими відкладеннями, закоксовування сопел розпилювачів, зношеність плунжерних пар паливного насоса, засмічування повітроочищувача, зміна кута вприскування, зниження температури охолоджувальної рідини, зношеність деталей паливного насоса, газорозподілу та шатунно-кривошипного механізму.

Залежно від виду несправності витрата пального в дизельних двигунах може збільшуватися до 20 %, а кількість викидів шкідливих речовин — на 20—100 %.

Зниження викидів шкідливих речовин ДВЗ можна досягти застосуванням таких методів: рідинної та полум'яної нейтралізації; ежекційного допалювання; використанням каталізаторів; подачею повітря у випускний колектор; застосуванням антидимових фільтрів тощо.

Зниження вмісту шкідливих речовин у викидах ДВЗ можна забезпечити і за рахунок застосування присадок до пального — метанолу, водню, скрапленого газу та емульсій.


2. Волоконно-оптичні сенсори

2.1 Характеристики оптичного волокна як структурного елемента датчика

довкілля забрудненість викид

Перш ніж оцінювати значимість цих характеристик в даній області застосування, відзначимо загальні переваги оптичних волокон [1]:

- широкосмужність (передбачається до декількох десятків терагерц);

- малі втрати (мінімальні 0,154 дБ/км);

- малий (близько 125 мкм) діаметр;

- мала (приблизно 30 г/км) маса;

- еластичність (мінімальний радіус вигину 2 мм);

- механічна міцність (витримує навантаження на розрив приблизно 7кг);

- відсутність взаємної інтерференції;

- безіндукційність (практично відсутній вплив електромагнітної індукції, а отже, і негативні явища, зв'язані з грозовими розрядами, близькістю до лінії електропередачі, імпульсами струму в силовій мережі);

- взривобезопасність (гарантується абсолютною нездатністю волокна бути причиною іскри);

- висока електроізоляційна міцність (наприклад, волокно довжиною 20 смвитримує напруга до 10000 B);

- висока корозійна стійкість, особливо до хімічних розчинників, олії, води.

У практиці використання волоконно-оптичних датчиків мають найбільше значення останні чотири властивості. Досить корисні і такі властивості, як еластичність, малі діаметр і маса. Широкосмужність же і малі втрати значно підвищують можливості оптичних волокон, але далеко не завжди ці переваги усвідомлюються розроблювачами датчиків. Однак, із сучасної точки зору, у міру розширення функціональних можливостей волоконно-оптичних датчиків у найближчому майбутньому ця ситуація потроху виправиться.

Як буде показано нижче, у волоконно-оптичних датчиках оптичне волокно може бути застосоване просто як лінія передачі, а може відігравати роль самого чуттєвого елемента датчика. В останньому випадку використовуються чутливість волокна до електричного поля (ефект Керра), магнітного полю (ефект Фарадея), до вібрації, температури, тиску, деформаціям (наприклад, до вигину). Багато з цих ефектів в оптичних системах зв'язку оцінюються як недоліки, у датчиках же їхня поява вважається скоріше перевагою, яку варто розвивати.

2.2 Волоконні світловоди і вимірювальні пристрої на їхній основі

Волоконний світловод (рис.1.1, а) складається із серцевини й оболонки, що виконуються зі спеціального кварцового скла [2]. Показник заломлення оболонки вибирається трохи більш низьким, ніж у серцевини. Тому світлові промені, що падають під досить великими кутами із серцевини на границю з оболонкою, будуть зазнавати повного внутрішнього відбивання.

У результаті ці промені,що називаються направляючими, будуть поширюватися по світловоду по зиґзаґоподібній траєкторії так, як це показано на рис.1.1, а. Сучасна технологія побудови оптичних волокон настільки досконала, що промені, що направляючі промені можуть поширюватися по світловодам на десятки кілометрів без істотних втрат енергії. В даний час волоконні світловоди широко застосовують для оптичного зв'язку (телеграф, телефон і т.п.). Іншим, більш важливим напрямком є використання оптичних волокон як чуттєві елементи приймачів фізичних величин.

Загальні відомості про хімічні сенсори.

Протягом всієї історії аналітичної хімії одна з найважливіших її задач складалася і полягає в тому, щоб установлювати зв'язок між складом і якою-небудь легко вимірюваною властивістю і використовувати виявлені закономірності, тобто ці зв'язки, для розробки способів визначення концентрації і відповідних пристроїв. До цих пристроїв відносяться і датчики, або хімічні сенсори, що подають пряму інформацію про хімічний склад середовища (розчину), у яку занурений датчик, без добору аналізованої проби і її спеціальної підготовки. Термін "хімічний сенсор" з'явився порівняно недавно. Успіхи в суміжних областях (фізика твердого тіла, мікроелектроніка, мікропроцесорна техніка, матеріалознавство) привели до появи нового напрямку в аналітичній хімії - хімічних сенсорів (ХС). Сенсорні аналізатори можуть працювати автономно, без втручання оператора, причому передбачається, що вони зв'язані із системами нагромадження й автоматизованої обробки інформації. Значення ХС і створених на їхній основі аналізаторів у контролі стану середовища існування й охороні здоров'я людини важко переоцінити.

Принципи роботи і пристрій хімічних сенсорів.

ХС складається з хімічного селективного шару датчика, що дає відгук на присутність обумовленого компонента і зміна його змісту, і фізичного перетворювача (трансдьюсера) [6]. Останній перетворить енергію, що виникає в ході реакції селективного шару з обумовленим компонентом, в електричний або світловий сигнал, що потім вимірюється за допомогою світлочутливого і/або електронного пристрою. Цей сигнал і є аналітичним, оскільки подає пряму інформацію про склад середовища (розчину). ХС можуть працювати на принципах хімічних реакцій, коли аналітичний сигнал виникає внаслідок хімічної взаємодії обумовленого компонента з чуттєвим шаром, або на фізичних принципах, коли виміряється фізичний параметр (поглинання або відображення світла, маса, провідність). У першому випадку чуттєвий шар виконує функцію хімічного перетворювача.

Для підвищення вибірковості на вхідному пристрої ХС (перед хімічно чуттєвим шаром) можуть розміщатися мембрани, що селективно пропускають частки обумовленого компонента (іонообмінні, діалізні, гідрофобні й інші плівки). У цьому випадку обумовлена речовина дифундує через напівпроникну мембрану до тонкого шару хімічного перетворювача, у якому формується аналітичний сигнал на компонент. На основі ХС конструюють сенсорні аналізатори - прилади, призначені для визначення якої-небудь речовини в заданому діапазоні його концентрацій. Ці аналізатори можуть мати малі габарити (іноді наближаються до розмірів калькулятора або авторучки). Оскільки в їхній конструкції відсутні деталі, що перетерплюють механічний знос, пристрої характеризуються досить тривалим терміном експлуатації (до року і більш). Об'єднані в батарею і підключені до комп'ютера, ХС здатні забезпечити аналіз складних сумішей і дати диференційовану інформацію про зміст кожного компонента. У сенсорних аналізаторах вбудовані мікросхеми дозволяють вводити виправлення на зміну температури, вологості, враховувати вплив інших компонентів середовища, проводити градуюровку і настроювання нульового значення на шкалі показів.