Смекни!
smekni.com

Анализ методики проведения санитарно-экологического состояния объекта (стр. 5 из 14)

О прямом действии звука свидетельствуют опыты исследования микрофонного потенциала внутреннего уха (кохлеарного нерва) на наркотизированных животных. Было установлено видовое различие чувствительности ганглиозных клеток к интенсивности звука. Поскольку подопытные животные были наркотизированы, то, как надо полагать, действие звука воспринималось не рецепторами, а непосредственно ганглиозными клетками.

Известно, что звук интенсивностью 94 дБ подавляет экспериментально вызванный лейкоцитоз животных. Из этих данных следует, что звук пронизывает все тканиорганизма, вызывая в них функциональные и структурные нарушения. Если учесть при этом, что каждая клеточная популяция (нервная, мышечная, эпителиальная), каждая функциональная система обладают своей, специфической для нее чувствительностью к звуковым воздействиям, то становится понятным многообразие форм патологии, вызываемой звуком (шумом), как и вибрацией.

В норме шум воспринимается всеми рецепторами, а, например, для телец Пачини, он является адекватным раздражителем. Но при более мощных звуковых воздействиях, рецепторы перестают «работать». Происходит своеобразное «зашкаливание», и звуковая энергия воспринимается всеми тканями организма.

К сожалению, еще не известна степень чувствительности нерецепторных клеток к звуку и вибрации; таких исследований нет и поныне. Между тем отсутствие этих знаний затрудняет понимание механизма биологического действия звука и вибрации.

Итак, вибрация и звук при определенных условиях являются биологически опасным фактором, угрожающим целостности организма. Эта опасность для человека стремительно возрастает в связи с развитием техники, так как увеличивается интенсивность сопутствующих факторов, при действии которых и вибрация, и шум становятся особенно опасными. Речь идет о температуре окружающей среды, степени загрязнения атмосферы, радиации, магнитных полях и др. Следует иметь в виду и то, что наряду с физическими факторами в патогенезе вибрационной болезни важнейшую роль играет фактор социальный: моральная обстановка в трудовом коллективе, интерес к профессии, материальные условия жизни и др. Именно в силу своей массовости, в силу этих сопутствующих факторов новая нозологическая единица болезни, порожденная техническим прогрессом, — вибрационная болезнь — теперь стала предметом исследований медиков всех стран мира, ученых различных областей науки: физиологов, биофизиков, математиков и, как мы уже подчеркивали, социологов; эта проблема в наше время приобрела важнейшее социальное значение.[4]


1.3 Нормирование шума

При установлении нормативов шума в большинстве случаев приходится исходить не из оптимальных или комфортных, а из терпимых условий, при которых вредное воздействие шума на человека либо не проявляется, либо незначительно. При установлении норм шума нельзя также пренебрегать экономической стороной дела. Выбирать нормы с большим запасом в сторону ужесточения нецелесообразно; такого рода нормы не послужат стимулом для развития работ по борьбе с шумом. Занижение же норм может оказаться сильнейшим тормозом в этом деле, ввиду того что достигнуть таких норм в практических условиях невозможно из-за отсутствия достаточно эффективных шумозаглушающих средств или из-за непомерно больших экономических затрат. Необходимо подчеркнуть большое практическое значение санитарных норм предельно допустимого шума в различных местах и обстоятельствах.

Для защиты населения от шума решающее значение имеют санитарно-гигиенические нормативы допустимых уровней шума, поскольку они определяют необходимость разработки тех или иных мер по шумозащите в городах. Цель гигиенического нормирования — профилактика функциональных расстройств и заболеваний, развития чрезмерного утомления и снижения трудоспособности населения при кратковременном или продолжительном действии шума в окружающей среде. В зависимости от своего назначения помещения зданий и селитебные территории должны быть соответственно защищены от шума. Степень шумозащищенности, в первую очередь определяется нормами допустимого шума для помещения или территории данного назначения. Проникающие в помещения или на территорию шумы от любых источников не должны превышать нормативных величин.

Такие нормы устанавливаются в главах СНиП, стандартах или санитарных нормах. Нормируемыми параметрамипостоянного шума в расчетных точках являются уровни звукового давления L, дБ, в октавных полосах частот со среднегеометрическими частотами 63, 125, 250, 500, 1000, 2000, 4000 и 8000 Гц. Для ориентировочных расчетов допускается использовать уровни звука LА, дБА. Нормируемыми параметрами непостоянного шума в расчётных точках являются эквивалентные уровни звука,LАэкв, дБА, и максимальные уровни звука LAмакс, дБА. [3][1]. Шумовая гистограмма представлена в приложении Б. Таблица уровней звукового давления в приложении А.

1.4 Определение уровней звукового давления в расчетных точках

1.4.1 Характеристика объекта как источника шумового загрязнения

Завод по «Сборке мебели из готовых изделий» находится в юго-восточной части г. Тюмени, в районе железнодорожной станции «Войновка», на водоразделе рек Пышмы, протекающей с запада на восток в 20 км южнее промышленной площадки и Туры, протекающей с запада на восток в 8 км севернее площадки.

1.4.2 Инвентаризация источников шумового загрязнения в составе объекта

Марка Количество штук Уровни звукового давления, дБ, в октавных полосах, со среднегеометрическими частотами, Гц
63 125 250 500 1000 2000 4000 8000
SystemAir T 4 3 88 82 76 80 74 72 70 67

Шумовые характеристики вентиляторов приняты согласно каталогу фирм-производителей.

Октавные уровни звуковой мощности вентиляторов на выходе, Lp, дБ.

По заданию произведем расчет только трех точечных источника шума этого предприятия, так как они находятся в открытом пространстве и являются источниками внешнего шума.

1.4.3 Выбор расчетных точек на территории

Измерение шума на селитебной территории следует проводить: на площадках отдыха микрорайонов и групп жилых домов, площадках детских дошкольных учреждений и участках школ, территориях больниц и санаториев - не менее чем в трех точках, расположенных на ближайшей к источнику шума границе площадок (вне звуковой тени) на высоте 1,2 - 1,5 м от уровня поверхности площадок; на территории, непосредственно прилегающей к жилым домам и зданиям больниц, санаториев, детских дошкольных учреждений и школ - не менее чем в трех точках, расположенных на расстоянии 2 м от ограждающих конструкций зданий на высоте 1,2 - 1,5 м от уровня поверхности территории и, при необходимости, на уровне середины окон. Окна зданий в этом случае должны быть закрыты.

Расчётные точки на прилегающей территории выбираются у ближайших жилых объектов на расстоянии 2 м от их фасадов. Со стороны восточного фасада жилого дома выбрано 1 расчётная точка: РТ1 у жилого 16-этажного здания на высоте 12 метров.

1.4.4 Расчет точечных источников

Расчёт уровней звуковой мощности источника (УЗМ, дБ) в октавных полосах частот на основе введённых данных о свойствах источника.

Согласно СНиП 23-03-2003, если источник шума и расчетная точка расположены на территории, расстояние между ними больше удвоенного максимального размера источника шума и между ними нет препятствий, экранирующих шум или отражающих шум в направлении расчетной точки, то октавные уровни звукового давления

, дБ, в расчетных точках следует определять по формуле:

при точечном источнике звука:

(3)

где Lp - октавный или октавный эквивалентный уровень звуковой мощности источника шума, дБ;

Ф - фактор направленности источника шума для направления на расчетную точку, безразмерный; для ненаправленного источника шума Ф = 1; при оценке шума, создаваемого источником с неизвестным Ф, его следует считать ненаправленным;

- пространственный угол (в стерадианах), в который излучается шум; для источника шума в пространство
; на поверхности территории или ограждающих конструкций зданий и сооружений
; в двухгранном углу, образованном ограждающими конструкциями зданий и сооружений,
; в трехгранном углу
.(см. таблица № 8, приложение А)