Смекни!
smekni.com

Глобальный круговорот углерода и климат (стр. 3 из 11)

Среди форм такого выхода из цикла особое значение имеет рассеяние элемента, его выход в форме свободных атомов. Быть может, элемент этим путем выходит из цикла, иногда навсегда.

2.2 Биогеохимические круговороты углерода: ландшафтный, малый и биосферный

Биогеохимический круговорот углерода - это комбинация последовательных периодических (в течение суток – миллиардов лет) непрерывных замкнутых процессов превращения, перемещения, распределения, рассеяния и концентрации углерода через косную и органическую природу в биосфере при активном участии живых организмов. Биогеохимический круговорот углерода в биосфере в целом и в конкретном ландшафте – из диоксида углерода в живое вещество и обратно в диоксид углерода – приводится в действие диалектическим единством двух противоположно направленных процессов – фотосинтеза и минерализации. Но часть углерода посредством медленно идущих циклических процессов удаляется, отлагаясь в осадочных породах. Баланс атмосферного углерода определяется биогеохимическими круговоротами, в каждом из которых осуществляются приход и расход СО2 [20].

В ходе жизнедеятельности организмов (в процессе дыхания) и при вулканических извержениях углерод возвращается в атмосферу и гидросферу. Определенное количество его отлагается в литосфере и педосфере и расходуется на углекислотное выветривание алюмосиликатов и образование различных углеродистых соединений. При этом биологические компоненты ежегодного круговорота углерода значительно превосходят геологические составляющие этого процесса.

В течение четырех лет растения суши и моря усваивают столько углерода, сколько его содержится в атмосфере, а в течение 300 лет – в гидросфере. За время геологической истории углерод атмосферы и гидросферы, вероятно, многократно участвовал в круговоротах. Однако эти циклы (цикл – законченный круг миграции углерода в биогеохимических круговоротах) необратимы. Стоит заметить, что извлеченный из атмосферы углерод, и захороненный даже в виде карбонатов, не говоря уже о захороненной органике, извлекается из нее все же не навсегда. По прошествии некоторого, часто очень значительного времени (до сотен миллионов лет и более), он возвращается обратно в атмосферу и участвует в дальнейшем круговороте.

Предположим, что в определенный период времени начинается интенсивное образование осадков, содержащих углерод (хоть образование карбонатов, хоть захоронение органики, хоть и то, и то, вместе), и через некоторое время прекращается. Накопленные океанической корой большие запасы осадков постепенно в процессе субдукции попадают в недра, на большую глубину, где под действием очень высокой температуры происходит разложение этих больших запасов карбонатов и органики. В результате, по прошествии некоторого, довольно большого времени (которое требуется, чтобы часть плиты с высоким содержанием упомянутых осадков дошла до больших глубин до сотни километров) увеличиваются потоки углекислого газа и метана в атмосферу. Однако увеличение потоков этих газов в атмосферу в свою очередь стимулирует и рост биомассы (с последующим увеличением захоронения отмершей части), и накопление карбонатов, что приводит в дальнейшем к повторению цикла.

Цикл органического углерода определяется реакциями фотосинтеза, ведущими к образованию первичной продукции (новообразование органического вещества растений продуцентов):

СО2 + Н2О = [СН2О] + О2

где [СН2О] – сокращенное обозначение биомассы, и суммарной реакцией деструкции:


[СН2О] + О2 = СО2 + Н2О (дыхание).

Цикл органического углерода сопряжен с циклом неорганического углерода путем углекислотного выщелачивания изверженных пород и образования осадочных карбонатов по обратной реакции:

Са (НСО3)2 ↔ СаСО3 + СО2 + Н2О.

При этом карбонатное равновесие или устанавливается химически, или катализируется ферментом карбоангидразой. Углекислотное выветривание магматических пород привело к образованию огромных запасов минерального углерода в виде известняков и доломитов.

Скорость изменения массы углерода в атмосфере зависит от интенсивности изъятия его из воздушной оболочки и консервации. Выведение СО2 из круговоротов происходит в результате продукции органического вещества фотосинтезирующими растениями и связывания при образовании карбонатных пород в результате процессов выветривания-почвообразования. В химическом отношении роль СО2 при выветривании сводится к вытеснению из силикатов и алюмосиликатов щелочных и щелочноземельных металлов и переводу их в карбонаты. Например, образование каолинита из плагиоклазов, наиболее распространенных силикатных минералов литосферы, описывается реакциями альбит каолинит

2NaAlSi308 + 2СО2 + 3Н2О = Al2 [Si2O5] (OH)4 + 2NaHCO3 + 4SiO2,

анортит каолинит

СаА12SiO2О8 + 2СО2 + 3Н2О = Al2 [Si2O5] (OH)4 + Ca(HCO3)2.

Однако кроме силикатных пород углекислотному выветриванию подвержены также осадочные карбонатные породы, взаимодействие которых с атмосферным СО2 идет по реакции

СаСО3 + СО2 + Н2O= Са (НСO3)2.

Связывание атмосферного СО2 при выветривании происходит опосредованно через цикл продукции и деструкции органического вещества почв. В этом отношении почвенный покров является своеобразным химическим реактором, где идут процессы выветривания.

Преобладающая часть атомов углерода земной коры сосредоточена в известняках и доломитах (минеральный, или неорганический углерод). Отношение захороненного углерода (103 ГтС) в продуктах фотосинтеза к углероду в карбонатных породах (107 ГтС) составляет 1:4 [20]. Время, в течение которого происходило накопление углерода в литосфере, очень велико и сравнимо с временем существования биосферы.

Особое место в современных биогеохимических циклах углерода занимают сжигание горючих ископаемых (угля, нефти, газа и др.), обжиг известняка, лесные пожары, вырубка лесов, распашка земель и т.п., связанные с деятельностью человека. В результате в атмосферу возвращается около 1,5 млрд. т углерода, т.е. примерно столько же, сколько его ежегодно связывается в ходе выветривания (образование СаСО3 и других минералов). Биогеохимические круговороты углерода протекают в пространстве и времени. По длительности (периодичности) и пространственному развитию можно выделить относительно короткие (часы – тысячи лет) биогеохимические круговороты (малый и ландшафтный биогеохимические циклы углерода) и биогеохимический цикл, соизмеримый с геологической историей (большой биогеохимический цикл углерода). В пространственном отношении первые протекают в широком спектре экосистем (ландшафтов) разных уровней, второй – охватывает всю биосферу. Малый и ландшафтный биогеохимические круговороты (циклы) углерода развиваются на фоне большого биогеохимического круговорота (цикла) и являются его составной частью.

В биогеохимических круговоротах углерода особо важная роль принадлежит почве, поскольку она служит важнейшим накопителем органического вещества, представленного органическими остатками и гумусом, которые служат одновременно и аккумулятором, и донором СО2. Педосфера, являясь одной из главных фаз биосферного круговорота, выполняет в отношении углерода следующие функции: резервуара для стока и трансформации атмосферного углерода, ассимилированного при фотосинтезе наземной растительностью; генератора и аккумулятора устойчивых соединений углерода в форме гумуса и карбонатов; генератора и источника подвижных соединений и бикарбонатов в виде углеродосодержащих газов (прежде всего СО2) и водорастворимых органических соединений и бикарбонатов.

Педогенный углерод, включаясь в воздушные и водные миграционные потоки, связывает биоту, атмосферу, гидросферу, литосферу в единый биосферный биогеохимический круговорот веществ.

Ландшафтный биогеохимический круговорот углерода – миграция, распределение, рассеяние и концентрация углерода, осуществляющиеся на литологически однородном участке земной поверхности (части географической оболочки Земли) от элювиальных ландшафтов к супераквальным и субаквальным (аквальным), представляющем сложную биокосную систему, в которой почва, кора выветривания, континентальные отложения, грунтовые и поверхностные воды, растительность, животный мир, приземный слой атмосферы тесно между собой связаны миграцией атомов углерода. Между компонентами ландшафта существуют радиальные, или вертикальные (между атмосферой, растительным и животным миром, почвами, горными породами, подземными и поверхностными водами), и латеральные, или горизонтальные (между соседними геосистемами разных рангов), миграции углерода.

Природный ландшафтный биогеохимический круговорот углерода складывается из его абиогенной (физико-химической, механической) и биогенной (фотосинтез, разложение органического вещества и т.д.) миграции. На данном типе круговорота акцентируется внимание при решении локальных и региональных задач, связанных с циклами и балансом углерода, при изучении элювиальных (автономных), трансэлювиальных (транзитных), супераквальных и субаквальных элементарных геохимически сопряженных ландшафтов. Вертикальная мощность ландшафта измеряется слоем, в котором наиболее активно взаимодействуют все отдельные среды.

Малый биогеохимический круговорот углерода – динамическая геохимическая система превращения живого вещества, в которой происходит беспрерывный круговорот углерода при участии растений, животных и микроорганизмов. В круговороте участвуют почва (педосфера), растительность и атмосфера, которые объединены механизмом прямой и обратной связи (почва ↔ растительность ↔ атмосфера).