Смекни!
smekni.com

Экология и экономика природопользования (стр. 7 из 113)

Работа поверхностных вод постепенно приводит к выравниванию рельефа и, следовательно, к уменьшению энергии водного стока. Этому процессу противостоит поднятие отдельных участков суши в результате тектонических движений земной коры, происходящих медленно и незаметно, но иногда сменяющихся периодами бурного горообразования с землетрясениями и извержениями.

Наряду с поднятием одних участков суши происходит соответственное опускание других. Тектоническая неравномерность движений земной коры играет большую роль в изменении поверхности биосферы, в создании соответственной орографической неравномерности в виде неровностей рельефа, обусловливающих движение вещества на суше.

Пространственная неоднородность состоит, во-первых, в неравномерности распределения вещества в биосфере и, во-вторых, в структурной неравномерности тел биосферы по причине своеобразного соотношения моментов симметрии и диссимметрии.

Анализ вещественного состава биосферы показывает исключительную неравномерность распределения масс вещества в различных состояниях. Наибольшее количество массы сосредоточено в наружном слое литосферы и в гидросфере, гораздо меньшее — в составе атмосферы и, наконец, сравнительно незначительное количество вещества входит в состав организмов биосферы. Неравномерность распределения вещества, характерная и для неорганической части биосферы, в отношении органической части биосферы особенно разительна. Эта неравномерность распределения масс вещества и разнородность его агрегатных состояний обусловливают возможность движения и усложнения материи в системе биосферы.

Не менее велика роль вещественной неравномерности и структурной разнородности во взаимодействии органической и неорганической частей биосферы. Характерной чертой неживых тел является симметричное соотношение элементов структуры на молекулярном уровне, то есть примерно одинаковое количество левых и правых стереоизомеров в составе вещества, тогда как для жизненно важных компонентов тел живой природы — белков, жиров, углеводов — характерно преобладание стерео-специфических изомеров, преимущественно левых. Это имеет большое значение для развития живой природы и биосферы в целом, поскольку стереоспецифические вещества энергетически более активны.

Энергетическая неоднородность выражается в неравномерном распределении по земной поверхности солнечной энергии (тепла, света), а также в неодинаковом соотношении вещества и энергии в телах биосферы в зависимости от их структуры. В симметрично организованных телах энергия находится преимущественно в связанном, потенциальном состоянии, и, наоборот, в телах, диссимметрично организованных (таковы в основном организмы), большая часть энергии пребывает в свободном, эффективном состоянии, что делает их энергетически более интенсивными. Следовательно, большей массе симметрично организованного вещества может соответствовать меньшее количество эффективной энергии, чем сравнительно небольшой массе диссимметрично и, особенно, асимметрично организованного вещества. Это прослеживается уже в неживой природе, но особенно характерно при сопоставлении живых и неживых систем. Наиболее симметричное тело неживой природы — кристалл — в то же время обладает наименьшим количеством эффективной энергии, и, наоборот, структурно диссимметричные жидкие и особенно газообразные тела энергетически наиболее активны. Например, кинетическая энергия морей составляет не более 2% кинетической энергии атмосферы, причем большая часть ее создана воздействием ветра на воду17. В свою очередь энергия ветра возникает в основном за счет перепада температур между полярными и экваториальными зонами.

Энергетическая активность живых тел с их ярко выраженной асимметричностью структуры на молекулярном уровне настолько велика, что в орбиту живой материи вовлекаются непрерывно нарастающие массы вещества, и практически весь химизм биосферы оказывается функцией деятельности организмов. Неравномерное распределение энергии приводит к очень важным для развития биосферы последствиям: создается значительная разность потенциалов между элементами и частями биосферы и особенно между неживой и живой природой, чем обеспечивается преимущественный ток атомов от первой ко второй. Отсюда тенденция возрастания массы живого вещества и накопления энергетически богатого биогенного вещества в земной коре.

Геохимическая неоднородность — это неравномерность распределения атомов различных химических элементов в земной коре. Причины неравномерности распределения химических элементов в биосфере различны: здесь и геологические условия возникновения земной поверхности, и особенности структуры самих атомов, и т.д. Однако с момента возникновения жизни деятельность организмов стала решающим фактором неравномерности перераспределения химических элементов по периферии нашей планеты благодаря способности организмов концентрировать строго определенные элементы в составе своего тела соответственно видовым особенностям. Одной из основных задач биогеохимии является изучение роли живого вещества в миграции атомов по земной поверхности.

Зональная неоднородность поверхности Земли впервые четко была определена В.В.Докучаевым, хотя предвосхищавшие это положение идеи высказывались еще А. Гумбольдтом. Неравномерное по широтным зонам расселение органических форм и отложение продуктов их жизнедеятельности отражают диссимметрию неорганических условий существования жизни и составляют одну из закономерностей биосферы.

Таким образом, неоднородность является важнейшей чертой биосферы. Биосфера — это единственная на нашей планете область, где полностью представлены во взаимодействии все известные формы движения материи: микрофизическая, химическая, физическая, биологическая, социальная.

Такое многообразие форм материи возникает, по-видимому, только на планетных телах при условии образования на них биосфер. Само появление богатства материальных форм в биосфере свидетельствует об исключительном многообразии условий, существующих в ней, и высоком развитии противоречий, разрешающихся во все более сложных формах движения вплоть до социальной.

Это многообразие форм способствует дальнейшему усложнению компонентов биосферы и повышению типа целостности ее как системы. Неоднородность частей и элементов биосферы обусловливает их неразрывное взаимодействие в рамках целого и исключительную степень зависимости частей друг от друга. Эта зависимость обеспечивается обменными процессами, связывающими все части в единое целое в рамках некоторого цикла. Каждая из частей в обменном цикле играет весьма важную роль, и с выпадением любой части нарушилась бы вся система.

Обменный цикл, ответственный за объединение частей целого, принято называть интегративным фактором. Таким фактором, обеспечивающим взаимодействие неорганических частей будущей биосферы до возникновения жизни, являлся абиогенный геологический круговорот веществ. С появлением жизни наряду с абиогенным круговоротом вещества складывается биологический круговорот26. Поскольку масса живого вещества увеличивается, биологический круговорот имеет тенденцию к постепенному расширению сферы своего действия, вовлекая все большее количество вещества и энергии за счет элементов геологического круговорота. Функциональное переключение природных круговоротов на развитие живого вещества планеты способствовало более четкой их направленности, а также нарастанию их интенсивности и организованности соответственно развитию взаимосвязи цепей питания в биоценозах, составляющих биосферу.

Сама биосфера как качественно особое образование возникла тогда, когда сложился достаточно развитый биологический круговорот вещества и энергии. По мнению А.П.Виноградова, это произошло не менее 2×109 лет назад18. В порядке доказательства он приводит палеонтологические данные, свидетельствующие о явно окислительном характере среды в то время.

В ходе естественного отбора у организмов архейской биосферы, по-видимому, довольно скоро появилась способность к фотосинтезу, что обеспечило возможность нового скачка в развитии живой материи. С этих пор количество свободного кислорода в атмосфере стало быстро возрастать за счет высвобождения его из воды деятельностью автотрофов.

В результате восстановительная среда все больше заменялась на окислительную, в условиях которой становилось невозможным химическое образование углеродных соединений, а могло происходить лишь их разрушение. По-видимому, этот этап замены восстановительной среды на окислительную можно считать периодом перехода пробиосферы в биосферу с наличием присущих ей частей.

Важным этапом в развитии биосферы явилось возникновение такой ее части, как почвенный покров. С возникновением почвы достаточно развитого профиля биосфера становится целостно завершенной системой, все части которой тесно взаимосвязаны и зависят друг от друга.

Рассмотрим характер взаимосвязи частей биосферы и их обусловленность в процессе развития.

Во всякой целостной системе выделяют такие аспекты взаимодействия частей, как: координация, корреляция, субординация. Если понятие «координация» раскрывает характер взаимосвязи между частями целого, а понятие «корреляция» — характер изменения самих частей в ходе их взаимодействия, то понятие «субординация» раскрывает порядок взаимосвязи между частями целого. Все эти типы отношений мы находим и между частями биосферы. Зависимость частей системы складывается по мере их формирования и имеет исторический характер.