1.3 УЯЗВИМОСТЬ ПРИБРЕЖНЫХ ОКЕАНИЧЕСКИХ ЭКОСИСТЕМ ДЛЯ ВОЗМОЖНЫХ КЛИМАТИЧЕСКИХ ВОЗМУЩЕНИЙ
Пелагические и бентосные сообщества более близких к материкам областей отличаются от экосистем открытого океана взаимодействием с близлежащей сушей. На пелагические организмы здесь в большей степени влияет поступление питательных веществ, осадочного и другого материала из наземных систем, поэтому они характеризуются в целом более высокой продуктивностью.
С точки зрения возможных последствий ядерной войны на прибрежные пелагические экосистемы также действуют снижение освещенности и другие факторы, аналогичные уже отмеченным для открытого океана. Кроме того, вблизи побережий эти экосистемы могут испытывать более значительные изменения температуры из-за мелководья и влияния стока пресноводных бассейнов. На прибрежные сообщества сильнее действуют штормы и вследствие этого усиленное осадконакопление и перемешивание. Поступающие осадки могут усугублять проблему инсоляции.
В условиях нормальной зимы прибрежная продукция представляется достаточно и накапливается быстрее всего при низкой освещенности. Если бы фитопланктон смог адаптироваться к необычному времени наступления “кажущейся” зимы, первичная продукция не претерпела бы значительных изменений. Таким образом, возможно, что прибрежные экосистемы устойчивее к стрессам, связанным с климатическими изменениями, чем пелагические биоценозы открытого океана.
Экосистемы у берегов тропиков гораздо чувствительнее к понижению как освещенности, так и температуры. Тепловой диапазон существования водных сообществ здесь в целом вдвое уже, чем в умеренных областях. Так, например, коралловые рифы представляют собой экосистемы, распространение которых ограничено наиболее теплыми частями океана, где вода не охлаждается ниже 20 С, а глубины в основном не превышают 50 м. Коралловые рифы страдают уже при температурах около 15 С. Вдобавок к этому кораллы очень чувствительны к повышенным уровням ультрафиолетового излучения В. Вполне возможно, что воздействие индуцированных ядерной войной климатических возмущений на коралловые рифы будет относиться к числу наиболее распространенных и серьезных для морских экосистем. Аналогичным образом, от похолодания должны пострадать мелководные сообщества тропических морских трав. Собственно береговые участки - такие как пляжи, илистые отмели и соленые болота - испытывают гораздо более глубоко идущие воздействия, чем прочие океанические экосистемы. Это касается в особенности спада температур. Последствия температурных спадов будут зависеть от сезона, местоположения, солености и высоты приливов. Произойдет гибель организмов, обитающих на поверхности дна. Популяции рыб в прибрежных водах, не сталкивающиеся в норме с низкими температурами, сильно сократятся в результате даже кратковременных похолоданий. Еще одно важное обстоятельство заключается в том, что икра и личинки многих промысловых видов рыб живут вблизи поверхности воды и, таким образом, испытают особенно сильное отрицательное воздействие температуры, ультрафиолетового излучения В, токсичных веществ и прочих факторов.
2. ВОЗМОЖНЫЕ ПОСЛЕДСТВИЯ ДЛЯ ПРЕСНОВОДНЫХ ЭКОСИСТЕМ
2.1 УЯЗВИМОСТЬ ЭКОСИСТЕМ МАТЕРИКОВЫХ ВОДОЕМОВ ДЛЯ ВОЗМОЖНЫХ КЛИМАТИЧЕСКИХ ВОЗМУЩЕНИЙ
Пресноводные водоемы делятся на стоячие (т.е. пруды и озера) и проточные (т.е. реки и ручьи). На рисунке 2.1.1 представлены основные изменения, которые могут случиться в гидрологическом режиме суши в ответ на возможные атмосферные возмущения после ядерной войны. В целом снижение температуры и уровня атмосферных осадков приведет к быстрому сокращению количества жидкой воды, запасенной в реках и озерах. Изменения грунтовых вод будут намного медленнее и гораздо менее выражены.
Основная часть пресной воды на поверхности суши сосредоточена в озерах; в руслах рек в каждый отдельный момент времени ее относительно мало (таблица 2.1.1). Поэтому в данном разделе будут рассматриваться главным образом озера.
Таблица 2.1.1. Некоторые данные по водному балансу
Северного полушария
Составляющие водного баланса | Европа | Азия | Северная Америка |
Средний запас воды в реках, км 3 | 80 | 565 | 250 |
ПОСТУПЛЕНИЯ за счет поверхност- ного стока за счет грунтовых вод | 2090 1120 | 10660 3750 | 5290 2160 |
Расход, км 3 / год | 3210 | 14410 | 7450 |
Средний запас воды в озерах, км 3 | 2027 | 27782 | 25623 |
Средний запас воды в водохранилищах, км 3 | 422 | 1350 | 950 |
Особенности озер определяются их размерами, притоком питательных веществ, донным субстратом, подстилающими породами, атмосферными осадками и множеством других параметров. Ключевым моментом в реакциях пресноводных экосистем на климатические возмущения является предполагаемое снижение температуры, а на втором месте стоит сокращение инсоляции. Сглаживание температурных колебаний особенно сильно выражено в крупных пресных водоемах. Однако их экосистемы в отличие от экосистем открытого океана должны пострадать от изменений температуры, возможных после ядерной войны.
Установление на длительный период отрицательных температур может вызвать образование на поверхности водоемов толстого слоя льда. Слой льда на мелководном озере может охватить значительную долю его объема.
Таблица 2.1.2. Распределение пресных озер и водохранилищ по
объему и площади
Площадь, км | Европа | Азия | Северная Америка |
Свыше 10000 | 1 17700 908 | 4 92670 23200 | 8 327280 24322 |
1000-10000 | 26 74989 995 | 21 67070 3128 | 22 73185 1258 |
100-1000 | 23 9618 479 | 36 16760 520 | 17 7252 214 |
Российские специалисты собрали статистические данные по размерам озер, включающие информацию о площади поверхности водоемов и их общем объеме. Эти данные обобщены в таблице 2.1.2. Следует отметить, что подавляющее большинство озер, т.е. наиболее часто встречающиеся и доступные человеку, относится к категории самых мелких. Водоемы этой категории будут в наибольшей степени подвержены промерзанию на значительную глубину. В табл. 2.1.3 приводятся статистические данные по площади и объему озер различных размерных классов.
Таблица 2.1.3. Распределение объема воды по глубинам для озер
различных размерных классов
Площадь, км | Процент общего объема 0.5 1.0 1.5 2.0 2.5 | В процентах общей площади по общего объема полушарию по полушарию |
Свыше 10000 | 0.5 0.9 1.3 1.8 2.2 | 22 86 |
1000-10000 | 2.0 4.0 5.8 7.6 9.2 | 11 10 |
100-1000 | 1.4 2.8 4.2 5.5 6.8 | 2 2 |
10-100 | 14 27 38 49 58 | 12 0.8 |
1-10 | 28 50 68 81 91 | 19 0.6 |
Менее 1 | 58 88 100 100 100 | 35 0.5 |
Одной из основных работ по оценке возможных последствий войны для озерных экосистем считается исследование Пономарева с сотрудниками, подготовленное а рамках проекта СКОПЕ-ЭНЮУОР. В этом исследовании была использована имитационная модель, разработанная в Санкт-Петербургском научно-исследовательском вычислительном центре Академии Наук для оценки динамики озерных экосистем и входящих в них видов, взаимоотношений между озерами и их водоразделами и влияния на озера промышленного развития. Рассматриваются три биотических компонента (фитопланктон, зоопланктон и детрит), связанные с такими понятиями, как азот, фосфор, донные осадки, растворенный кислород, температура воздуха, инсоляция и радиация (рис. 2.1.2). В разных вариантах анализа начало возмущения (ядерная война) приходилась либо на февраль, либо на июль.
Результаты моделирования февральской ядерной войны представлены на рис. 2.1.3, где приведены как нормальные, так и предполагаемые кривые изменения температуры воды, инсоляции, биомассы фитопланктона, зоопланктона, детрита и отношения количества минерального азота к органическому.
Последствия климатических изменений более серьезны и долгосрочны (рис. 2.1.4). Возвращение температуры и освещенности к нормальным уровням произойдет при этом сценарии как раз к моменту обычного наступления зимы.
Если климатические возмущения, вызванные ядерной войной, произойдут зимой там, где озерная вода в норме имеет температуру, близкую к нулю, они приведут к увеличению толщины льда.
В мелководных озерах не исключено промерзание до дна, приводящее к гибели большинства живых организмов. Если острые зимние возмущения климата затронут пресноводные экосистемы, не замерзающие в нормальной обстановке, биологические последствия обещают быть весьма серьезными. Хронические климатические нарушения, начавшиеся весной, или затянувшиеся последствия зимней ядерной войны могут задержать таяние льда.
При наступлении морозов в конце весны (а для южных озер - в любое время года) скорее всего произойдет полное отмирание живых компонентов экосистем под прямым воздействием падения температуры и освещенности. Однако, если морозы ударят летом, последствия, вероятно, будут не столь опустошительными, поскольку многие из наиболее уязвимых стадий жизненных циклов уже будут пройдены. Масштабы последствий будут определяться продолжительностью холодов. Продолжительность воздействия особенно сильно скажется следующей весной.
Климатические возмущения в осеннее время будут иметь наименьшие последствия для северных пресноводных экосистем, поскольку к этому моменту живые организмы уже пройдут все репродуктивные стадии. Беспозвоночные, фитопланктон и редуценты, даже если их численность значительно сократилась, восстановятся, как только климатические условия возвратятся к норме. Тем не менее, остаточные эффекты могут еще долго сказываться на функционировании экосистемы в целом, причем не исключается возможность некоторых необратимых процессов.