4.1 Азот
Это главный химический элемент тропосферы, имеющий огромное значение для развития жизни на нашей планете. Из 16*
моль азота, присутствующих в земной коре, 2,7* моль находится в виде в атмосфере, 0,014* моль растворено в океанических водах и 10,3* моль в той или иной форме заключены в горных породах литосферы[8].Азот постоянно поступает в атмосферу из глубин Земли с вулканическими эманациями, которые содержат от первых единиц до нескольких десятков процентов молекулярного азота (в газах лав гавайских вулканов, например, содержится 5,7 вес. %
). Еще более высокое содержание азота отмечается в газах горячих источников, получивших в связи с этим наименование азотных терм. Лишь около 0,0014* моль азота играют активную роль в круговороте этого элемента, однако роль эта весьма важна. В биосфере происходят широкая аккумуляция и фиксация азота из воздуха различными группами микроорганизмов, заключающаяся в превращении молекулярного азота в или . Процесс этот идет с поглощением энергии. Другие группы бактерий участвуют в окислении и до нитрит-иона (Nitrosomonas) и далее до нитрат-иона ( Nitrobacter ) по общей схеме:Окисление
или + → + ;Нитрификация
+ → .Оба процесса идут с выделением энергии[2].
Нитраты и нитриты, накапливающиеся таким образом в почве, в свою очередь, ассимилируются растениями. При этом вновь происходит восстановление их до
, который затем используется при построении аминогрупп. Важнейшим азотсодержащими соединениями животных и растений являются белки, которые содержат до 18% азота. Таким образом, органическое соединение азота, входящие в состав живого вещества, могут рассматриваться как аккумуляторы энергии[2].Помимо процессов накопления и связывания азота воздуха растениями в природе, правда, в более ограниченных масштабах, развивается и обратный процесс – денитрификация, осуществляемая в анаэробных условиях некоторыми видами бактерий. При этом процессе, также требующих затрат энергии, нитрат – или нитрит-ионы восстанавливаются до молекулярного азота или
. Подсчитано, что в результате денитрификации с 1 га почвы в атмосферу ежегодно поступает 50-60 кг азота. Процесс этот идет с выделением энергии по следующей общей схеме:COOH-
- + → + + [2].В отличие от биосферы, где миграция азота сопровождается образованием и распадом его соединений, для атмосферы образование окислов азота представляет собой хотя и закономерное, но редкое явление. Поэтому соединение азота с кислородом воздуха требует значительной энергии, в атмосфере такого рода реакции происходят только при вспышке молнии. Таким образом, содержание
в тропосфере прямо зависит от числа и интенсивности гроз. Об этом можно судить по вариациям содержания нитратов в дождевых водах районов с различным климатом. Максимальное содержание нитрат-иона отмечается в дождевых водах, богатых нрозами тропических регионов, минимальное – в осадках влажных рацонов умеренного климата[2].С азотом связан ряд важных проблем, непосредственно касающихся состояния окружающей среды:
1. Проблема загрязнения атмосферы окислами азота;
2. Эксценссивное использование азота атмосферы в процессах техногенеза;
3. Загрязнение гидросферы и почв продуктами переработки атмосферного азота.
Техногенное поступление окислов азота в тропосферу происходит при всех процессах сжигания твердого и жидкого топлива и для индустриально развитых стран измеряется десятками миллионов тонн в год. Повышая окислительную способность атмосферы и увеличивая кислотность метеорных осадков, а так же содержание нитратов в водах районов загрязнения , аномальные концентрации окислов азота воздухе могут привлечь нежелательные изменения развития экосистем, являясь отрицательным фактором для окружающей среды. В списке наиболее важных загрязнителей, рекомендуемых для международного контроля, окислы азота помещены на пятом месте.
Не менее, а может быть более серьезную проблему для окружающей среды представляют извлечение и использование азота воздуха человеком для разнообразных промышленных и главным образом сельскохозяйственных нужд (азотные удобрения). В результате количество неактивного азота, извлекаемого из атмосферы и преобразуемого в активные соединения азота с кислородом и водородом, в конечном итоге превышает поступление его в атмосферу в результате денирификации[2].
4.2 Кислород
Запасы кислорода в атмосфере составляют порядка 1,5*
моль . Единственным источником поступления кислорода в окружающую среду являются процессы фотосинтеза. Зеленые растения биосферы ежегодно выделяют в атмосферу около 4,67* г кислорода. Из этого количества 11,3% производят наземные растения и 88,7% водные растения. Таким образом, растения и особенно растения океана играют исключительную роль в накоплении кислорода в атмосфере Земли. В процессах гипергенеза на поверхность земной коры происходит непрерывное связывание свободного кислорода атмосферы при окислении закисного железа ( с образованием окисного ), соединений двухвалентного марганца, сульфидов, органических остатков[3].