Преимущества: Требуют меньшую общую длину труб, чем большинство проектов закрытых петель; требует наименьшую энергию насоса из всех систем закрытой петли; требует наименьшей площади поверхности земли; подземная температура обычно не зависит от сезонных колебаний.
Недостатки: требуется оборудование для бурения; расходы на бурение часто выше расходов на горизонтальную траншею
Горизонтальный теплообменник (закрытая петля).
Как и в вертикальном теплообменнике вода/антифриз циркулирует по пластиковым трубам, проложенным в земле. В горизонтальной системе трубы находятся в траншеях, глубиной до 3-х метров и длиной от 7,5 до 40 м в зависимости от типа почвы. В траншею может устанавливаться до шести труб, с адекватным интервалом между ними. Трубы могут также быть спиральными, что позволяет сохранить производительность с меньшей траншей. Гарантийный срок службы теплообменника 50 лет.Преимущества: Установка горизонтальных тепловых обменников стоит
меньше, чем вертикальных, т.к. расходы на раскопку траншей обычно ниже, чем на бурение; гибкие варианты установки.Недостатки: Требуется большая площадь земли и длина труб; несколько менее эффективна по сравнению с вертикальной и открытой системой; температура под землей на небольшой глубине зависит от сезонных колебаний
Система с водоемом (закрытая петля)
Система с водоемом может быть наиболее экономичной при инсталляции и работе. Как и при вертикальной и горизонтальной системах, состоит из закрепленных на дне пластиковых труб с циркулирующей водой/ антифризом. Система использует высокие теплопроводные свойства воды. При этом не требуются скважины или траншеи, что значительно уменьшает расходы на инсталляцию. Также система с водоемом практически не зависит от колебаний температуры окружающего воздуха в отличие от воздушных кондиционеров.
Преимущества: Может потребоваться наименьшая общая длина труб по сравнению с другими проектами закрытой петли; может быть наиболее дешевым проектом, если достаточно воды.
Недостатки: Требуется большой объем воды.
Система с колодцем (открытая петля).
Эта система забирает воду из водоносного слоя в одном колодце, пропускает через тепловой насос, где отбирается или сбрасывается тепло, затем возвращает обратно в водоносный слой (вода сливается во второй колодец). Температура грунтовой воды постоянна (изменяется обычно в пределах одного градуса) в течение года, независимо от колебаний температуры воздуха. Поэтому тепловой насос будет работать с высокой эффективностью при любых погодных условиях. Эта система идеально подходит в случаях, когда имеются/возможны колодцы.
Преимущества: Простой проект, обычно имеет самую низкую стоимость; меньший объем бурения по сравнению с системами закрытой петли; имеют лучшие термодинамические характеристики, чем системы закрытой петли, т.к. используют доставляемую подземную воду земли с температурой лучше, чем в закрытом теплообменнике; может быть совмещена с питьевым колодцем; более низкие операционные расходы, если вода уже накачивается для других целей, например, для ирригации.
Недостатки: требуется большой поток воды; наличие воды может быть ограничено или не всегда возможно.; оборудование напрямую контактирует с грунтовыми водами на него влияет содержание жидкости (коррозийных веществ, твердых частиц и содержания бактерий); обычно требуется наибольшее количество энергии для накачки воды; могут потребоваться разрешения на скважины или возможны ограничения на использование подземных вод; сброс воды также может быть ограничен; высокие расходы на установку, если требуется другая скважина для возвращения воды.
Система имеет стандартное гарантийное обслуживание от 1 до 5 лет. Устройства ГТН автономны, и требования по техническому обслуживанию ясны и не требуется новых навыков ТО.
Т.к. ГТН обычно не имеет наружных элементов, подвергающиеся различным атмосферным и иным воздействиям (исключения системы с открытой петлей), то ГТН действительно требуют меньшего ТО, чем обычные воздушные кондиционеры.
Стандартное ТО для водо-воздушных ТН - это замена воздушного фильтра, выполняемая по мере надобности. Не требует особых навыков и сложных манипуляций.
В системах с закрытой петлей, подземная петля фактически не требует ТО. Циркуляционный насос требует стандартного ТО, как с любым насосом или системой с мотором, и петля с водой (закрытой системы) должна по режиму проверяться на температуру, давление, течение и концентрацию антифриза. Если нет течей, не требуется никаких дополнительных действий.
В системах открытой петли, требуемое ТО колодца идентично любому другому водному колодцу. Система должна контролироваться по графику на температуру, давление и течение. Т.к. ТН снабжается подземной водой, теплообменники должны обследоваться на возможные засорения и образования окалины. Главным образом широко известно, что требования к общему ТО, более низкие по сравнению с альтернативными технологиями.
Вывод
Из всего этого вывод последует таков: Тепловые насосы переносят, а не вырабатывают энергию. Этим и обусловлена их существенные преимущества по сравнению с традиционными источниками тепла. Тепловые насосы представляют собой устройство для перевода низкотемпературной энергии в высокотемпературную энергию и обратно.
Передача тепла производится рабочим телом -хладагентом (фреоном) также, как в обычном холодильнике. Электроэнергия, потребляемая тепловым насосом, тратится лишь на перемещение хладагента по системе с помощью компрессора.
Тепловые насосы (ТН) работают, перемещая тепловую энергию, в отличие от печи в которой происходит преобразование химической энергии в процессе горения. Принцип работы теплового насоса основывается на термодинамическом цикле Карно. По такому же принципу работают холодильники и кондиционеры (воздушные тепловые насосы). Охлаждение и обогрев в тепловом насосе обеспечивается компрессионным циклом, т.е. непрерывной циркуляцией, кипением и конденсацией хладагента в замкнутой системе. Кипение хладагента происходит при низком давлении и низкой температуре, а конденсация - при высоком давлении и температуре. В испарителе происходит отбор низкопотенциальной энергии у источника с относительно низкой температурой, а в конденсаторе - выделение концентрированной энергии в систему распределения тепла здания.