Смекни!
smekni.com

Очистка хромсодержащих сточных вод гальванопроизводства (стр. 7 из 17)


1 2 3


Накопитель хромовых стоков 1 323

4-х секционный

Накопитель цианистых стоков 1 323

Реактор хромовый 2 85

Реактор цианистый 1 17

Камера реакции и смешения 1 80

Отстойник горизонтальный,

Производительностью 2

45 л/с

Фильтр-пресс 60-ти рамный 1

K/FPRV-880

Фильтр-пресс марки РОМ-40 2

Реагентные баки:

- под бисульфит аммония 2 4

- под гипохлорит натрия 2 4

- под кислоту 2 4

Таблица 2.3.

Показатели очистки хромсодержащих сточных вод по

существующей технологической схеме [72].


Наименование Единицы До После ПДК Степень

ингредиентов измерения очистки очистки согл. очистки,%


1 2 3 4 5 6


РН - 2.0 8.0 -

Сухой остаток мг/л 820.5 70.9 1000 91.4

Цианиды мг/л 0.2 0 .00005 0.28 98.9

Хром (VI) мг/л 94.2 0.00008 0.14 98.9

Хром (III) мг/л 16.3 0.32 0.5 98.0

Железо мг/л 0.3 0.2 0.736 50.0

Цинк мг/л 175.5 0.45 0.079 98.7

Медь мг/л 8.5 0.21 0.05 97.5

Никель мг/л 5.7 0.086 0.09 98.5

Кадмий мг/л не обн. - 0.021 -

Нефтепродукты мг/л 1.0 1.0 0.69 0

2..3. Утилизация промышленных отходов завода «Автоприбор»

Площадка для размещения промышленных отходов размещается западнее поселка Ново-Александрово Суздальского района на территории бывшей городской свалки. В настоящее время данный полигон не отвечает современным требованиям к спецполигонам по захоронению твердых бытовых отходов, поэтому туда могут вывозиться только отходы, относящиеся к 4 классу опасности. Только треть всех отходов находит свое применение в строительстве. (Описание рекультивации полигона см. Приложение 1).

2.4. Оценка эффективности работы очистных сооружений станции нейтрализации площадки “А”

Из недостатков станции нейтрализации следует отметить:

1) Реагентный метод очистки приводит к образованию большого количества обводненных осадков, содержащих токсичные тяжелые металлы. Из-за отсутствия специального полигона основная масса осадков складируется на собственной территории предприятия, что создает реальную угрозу вторичного загрязнения окружающей среды.

2) Осадки от нейтрализации сточных вод содержат тяжелые металлы в количествах, представляющих промышленную ценность, в связи с чем целесообразно извлекать их из осадка.

3) Периодический режим обезвреживания хром- и циансодержащих сточных вод, что при расходах более 30 м 3/ч не рекомендуется.

4) Отсутствие хром- и цианметров в реакторах, что приводит к перерасходу реагентов.

5) Избыточное накопление осадка в отстойниках, приводящее к их износу и снижению эффективности очистки, в том числе и по тяжелым металлам и нефтепродуктам.

Приложение 8.1.

Рекультивация полигона по захоронению промышленных отходов

Площадка для размещения промышленных отходов размещается западнее поселка Ново-Александрово Суздальского района на территории бывшей городской свалки.Площадка представляет собой отсыпанные и уплотненные бытовые отходы мощностью до 3 м, присыпанные грунтом. Рельеф местности спокойный с уклоном в южном направлении. Проектом предусматривается устройство замкнутых обваловок из грунта, заполнение отходами гальванического производства траншей между обваловками и засыпка отходов грунтом. Общая площадь участка 2 га, продолжительность складирования отходов 2 года. Окончательная засыпка участка полигона увязана с общей планировкой закрытой городской свалки, подлежащей рекультивации. Складированию подлежит шлам гальванического производства (в сутки 14 т). Метод складирования - траншеи. Траншеи выполнены по спланированной поверхности участка существующей городской свалки, устройством чередующихся грунтовых валов, в промежутках которых складируется шлам общим слоем не более 0.5 м. Чтобы было равномерное заполнение траншей отходами, из-за уклона местности, периодически котлован пересыпается грунтовыми перемычками. После заполнения всей длины траншеи отходами, она засыпается грунтом.

Рекультивация закрытого полигона городской свалки производится через 4 года после закрытия полигона и направлена на восстановление сенокосных угодий. Рекультивация включает в себя: технический и биологический этапы. Технический: планировка участка, отсыпка замкнутых грунтовых котлованов, их заполнение гальваническим шламом, засыпка шлама грунтом, формирование откосов, планировка шлама

Продолжение приложения 8.1.

площадке, подвозка потенциально плодородного грунта и разравнивание его по участку и откосам. Рекультивационный слой состоит из отсыпанных

грунтовых валов высотой 80 см, заполненного шламом пространства между ними толщиной 50 см и присыпанного грунтом толщиной 30 см. Общий подстилающий слой засыпается на 20 см плодородной почвой. Биологический этап: уход за посевами, уборка урожая. Через 2 – 3 года территория передается совхозу для последующего использования земли. Для биологического этапа характерно внесение удобрений. Травосмесь составляется из 2 – 3 компонентов и более (клевер 10%, овсяница луговая 30%, пырей 40%, полевица белая 20%).

3.ПРЕДЛАГАЕМАЯ СХЕМА ОЧИСТКИ ХРОМСОДЕРЖАЩИХ СТОЧНЫХ ВОД

Предлагаемая схема очистки сточных вод гальванического цеха предусматривает применение комбинированного способа очистки, включающего в себя механическую очистку, сорбцию и ионообмен. Предлагается установка скорого напорного фильтра для очистки от взвешенных веществ; для задержания более крупных частиц – решетки; также предусматривается установка сорбционного фильтра для очистки от нефтепродуктов и органических веществ; электродиализатора для перевода ионов хрома(III) в ионы хрома(VI) и разложения цианидов; двух ионообменных аппаратов для селективной сорбции хрома(VI); двух ионообменных аппаратов для коллективной сорбции ионов цинка, меди и никеля.

3.1. Описание технологической схемы

Технологическая схема очистки хромсодержащих сточных вод изображена на рис. 3.1.

Сточные воды из гальваноцеха № 9 самотеком поступают на усреднитель У,откуда после усреднения насосом подаются на фильтр Ф. Далее сточные воды периодически насосом подаются на сорбционный фильтр П, где идет сорбция нефтепродуктов и органических веществ на сорбенте «Пороласт-F». Десорбцию нефтепродуктов проводят острым паром. Десорбат периодически собирают в емкость Е1, затем отправляют на сжигание в котельную. После сорбции на пороласте-F сточные воды подаются в электродиализатор Э, где происходит перевод ионов хром(III) в хром(VI), а также разложение содержащихся в сточной воде цианидов.

После электрохимической обработки вода поступает на сорбцию в колонну с эрлифтным устройством А, где на селективном анионите АМ-п сорбируется хром (VI). Насыщенный ионит после сорбции периодически поступает на десорбцию в другую колонну А, где происходит десорбция хромата натрия смешанным раствором 8%-ного гидроксида натрия и 6%-ного хлорида натрия. Элюат периодически собирают в емкость Е2, затем его направляют на использование в кожевенной промышленности, либо для производства электролитов.

После сорбции хрома вода насосом периодически подается в две катионообменные колонны К, где на ионите КУ-23Na идет коллективная сорбция ионов цинка, никеля, меди. Десорбция ионита осуществляется селективно: цинка - 0.2 Н раствором серной кислоты; никеля – 2 Н раствором серной кислоты; меди – 5 Н раствором серной кислоты. Элюаты цинка, никеля и меди собираются соответственно в емкости Е3, Е4, Е5. Очищенная вода поступает на водооборот.

Показатели очистки по предлагаемой технологической схеме приведены в табл. 3.1.

3.2. Расчет основного оборудования

Фонд рабочего времени: станция нейтрализации площадки «А» работает по две смены в сутки (в смене 7 часов), 5 дней в неделю, 250 дней в году.

Объем хромсодержащих стоков: 750 м3/сут, что составляет 53.571 м3/ч или 0.015 м3/с.

3.2.1. Расчет решеток [79]

Диаметр труб определяем из формулы:

Q = (p*D2/4)*Ucp, (3.1)

D = Ö4Q/3.14*Ucp, (3.2)

где Q – объем хромсодержащих стоков, м3/с;

Ucp – скорость движения воды в трубопроводе (перед решеткой),

принимаем Ucp= 0.6 м/с;

D = Ö (4* 0.015)/3.14*0.6 = 0.18 м = 180 мм

Диаметр трубопровода, используемого на станции нейтрализации для подачи хромсодержащих стоков 200 мм, материал – нержавеющая сталь предполагается использовать существующий трубопровод.

Для задержания крупных плавающих отбросов на очистных сооружениях устанавливают решетки со стержнями прямоугольной формы, обеспечивающими лучшее задержание и удаление отбросов. Решетки следует оснащать механизированными граблями для снятия отбросов. При количестве отбросов менее 0.1 м3 в 1 сут допускается установка решеток с ручной очисткой.

Потери напора в решетке определяются по формуле:

Hp = k* J*Ucp2/(2g), (3.3)

где k – коэффициент, учитывающий увеличение потерь напора из-за засорения решетки (рекомендуется принимать k=3);

J – коэффициент сопротивления, зависящий от формы стержней: J=b*(s/b)4/3 , где (3.4)

b - коэффициент для прямоугольных стержней, равный 2.42;

s – толщина стержней, принимаем s=0.005 м;

b – ширина прозоров решетки, принимаем b=0.016 м;

Ucp – скорость движения воды перед решеткой, принимаем

Ucp =0.6 м/с.

Hp = 2.42*(0.005/0.016)4/3*(0.62/2*9.81)*3= 0.028 м

Необходимую площадь решетки рассчитывают по скорости течения воды в прозорах 0.8 – 1.0 м/с при наполнении, соответствующем расчетному в подводящем канале.