Смекни!
smekni.com

Различные оценки степени загрязнения водоемов (стр. 2 из 3)

Величины сапробной валентности и индикаторные веса находят по опубликованным таблицам (Унифицированные методы исследования качества вод, 1966; Макрушин, 1974). Рассчитываются произведения a·J·h, b·J·h, c·J·hи т.д. для каждого вида и их суммы. Эти суммы делятся на суммы произведений J·h. Полученные величины (A, B, C, D, E) являются средневзвешенными сапробными валентностями биоценоза, сумма которых равна 10. Соотношение значений A:B:C:D:Eследует понимать как картину сапробных условий в биоценозе. Положение наивысшего значения в этом ряду определяет, к какой зоне сапробности следует отнести изучаемый биоценоз. Соседние величины позволяют судить о том, в какую сторону возможны отклонения (Макрушин, 1974).

Совершенствуясь в течение долгого времени, система Кольквитца-Марссона стала наиболее детально разработанной системой биологического анализа качества вод. Тем не менее, многие авторы указывают на ряд присущих ей недостатков. Большое количество исследователей отмечают громоздкость практического применения этой системы. Использование методов Пантле и Букка, Зелинки и Марвана, требует много времени и квалифицированных специалистов по систематике водной фауны и флоры (Макрушин, 1974; Мороз, 1978; Макрушин, Кутикова, 1976).

Эти методы дают положительные результаты для грязных и загрязненных участков, где встречаются организмы с индексами сапробности в основном известными, и были непригодны для тех, где много видов с не установленной сапробностью, особенно для самых чистых участков. На “чистых” станциях индексы сапробности оказались выше действительных (Мороз, 1978; Макрушин, Кутикова, 1976; Финогенова, Алимов, 1976; Макрушин, 1974). Непригодность этих методов также обусловлена различиями фауны среднеевропейских и наших рек (Финогенова, Алимов, 1976; Макрушин, 1974).

Произвольная оценка численности организмов не представляется достаточно корректной применительно к животным макрозообентоса из-за значительных различий в их размерах и вытекающей отсюда субъективности и путанице в определении частоты встречаемости. Понятия “много” и “мало” и т.д. для разных организмов будет иметь разные значения, что не всегда может быть квалифицированно осознанно (Финогенова, Алимов, 1976). Метод Пантле и Букка позволяет наглядно установить, что станции, относящиеся к одному и тому же классу вод, разнятся между собой (Мороз, 1978).

Система сапробности Кольквитца и Марссона и ее модификации разработаны применительно к водоемам, загрязненными органическими веществами биогенного происхождения. Для оценки степени загрязнения вод веществами химического происхождения она не пригодна.

C 1955 года начал работу над биотическим индексом Ф. Вудивисс. При разработке системы было решено, что она должна отвечать следующим требованиям:

1. быть цифровой;

2. иметь верхнее и нижнее предельные значения, в рамках которых могли бы уложиться все случаи качества воды, имеющие отношение к контролю загрязнения;

3. быть простой в применении даже в полевых условиях и не требовать сложных вычислений;

4. не должна зависеть от видов тех групп организмов, определение которых слишком трудоемко;

5. быть достаточно гибкой для возможного применения в будущем на основании накопленного опыта.

При выборе “ключевых” организмов или групп в качестве индикаторов изменения воды от очень загрязненной до чистой Ф.Вудивисс предпочел организмы, которые наиболее широко распространены в бассейне реки Трент (Англия). Он исследовал свыше 500 проб, взятых по всему водосбору реки и подтвердил возможность использования отмеченных им организмов как индикаторов качества воды. Действительно, загрязнение вод сокращает разнообразие организмов, хотя устойчивые к загрязнению воды могут продолжать существовать в обилии в этом же пункте (Вудивисс,1977). Этот факт и решил использовать Ф.Вудивисс для биотического индекса, но поскольку невозможно установить таксономическое положение всех организмов в течение ограниченного срока, Вудивиссом был составлен список оперативных единиц, которые для удобства он назвал “группами”. Несомненное достоинство этого метода в том, что в нем объединяются принципы индикаторного значения отдельных таксонов и принцип изменения разнообразия фауны в условиях загрязнения (Финогенова, Алимов, 1976; Гореликова, 1988). В отличии от системы Кольквитца-Марссона система Вудивисса может с успехом использоваться персоналом средней квалификации (Макрушин,1974).

Но есть также отрицательные моменты использования данного метода в наших водах. Сравнивая различные методы оценки качества вод, Т.Г. Мороз (1978) установил, что метод Вудивисса приемлем для грязных и сильно загрязненных вод; для более чистых вод биотические индексы занижены, так как отсутствовали личинки поденок, ручейников, веснянок и преобладали группы, которые в системе Вудивисса почти не отражены или же объединены в очень крупные таксоны. Н.П.Финогенова и А.Ф.Алимов (1976) считают, что необходимы специальные работы для разработки метода применительно к особенностям фауны разных районов в соответствии с зоогеографическим делением внутренних водоемов.

Н.М.Гореликова (1988) использовала метод Вудивисса для оценки качества вод Воткинского водохранилища. По ее расчетам, метод не может применяться в водохранилищах в целом, так как загрязняемый, но наиболее проточный район всегда имеет более разнообразную фауну, чем ниже- расположенные участки с замедленным водообменом и однообразными илистыми грунтами. Оценить качество воды методом Вудивисса можно только в проточных участках водохранилищ.

Индекс дает ненадежные результаты когда участок загрязнения находится на небольшом расстоянии от расположенного выше чистого участка реки. Вниз по течению мигрируют организмы характерные для зон с более высоким биотическим индексом (Тищиков, 1981).Фауна зарослей также не дает положительных результатов. Даже на участках с высоким уровнем загрязнения в зарослях присутствует разнообразный комплекс гидробионтов, включающих группы и виды, указывающие на высокий биотический индекс (Тищиков, 1981).

В 1961 году Гуднайт и Уитлей (по Финогеновой, Алимову, 1976) предложили оценивать состояние водоема по отношению численности олигохет к общей численности животных бентоса:


Если это соотношение более 60%, авторы определяют хорошее состояние водоема, если 60-80% - река в сомнительном состоянии и более 80% - река в тяжелом состоянии.

Индекс Гуднайта и Уитлея делят на шесть градаций (табл. 2).

Таблица 2

Отношение численности олигохет к общей численности

животных бентоса.

Сапробность 0.01-0.16 0.17-0.33 0.34-0.50 0.51-0.67 0.68-0.84 0.85-1.00
Вода чистая условно чистая

слабо

загрязненная

загрязненная грязная

очень

грязная

По мнению многих ученых (Винберг, Алимов, Балушкина, Никулина, Финогенова, Цалолихин, 1977; Мороз, 1978) индекс Гуднайта и Уитлея является наиболее подходящим для оценки качества вод по олигохетам, ведь он прост и удобен. Но, как отмечает Тищиков (1981), индекс Гуднайта и Уитлея зависит от полноты учета олигохет. Изучения реки Березины показали, что олигохеты встречаются до глубины 15-20 см, тогда как представители других групп до 3-6 см. Использование дночерпателей, не обеспечивающих отбор проб на достаточную глубину приводит к недоучету олигохет и, соответственно, снижению величины индекса.

Н.Г.Гореликова (1988), исследуя зообентос Воткинского водохранилища и проверяя различные индексы для оценки качества воды, предложила использовать в индексе Гуднайта и Уитлея не олигохет в целом, а численность тубифицид, что более точно отображало ситуацию качества вод.

Цанер в 1964 году (по Макрушину, 1974) предложил оценивать качество вод отношением численности Tubifextubifexк численности видов рода Limnodrillus. При чем соотношение тем выше, чем сильнее загрязнение. Цанер в 1965 году дает таблицу (табл. 3), в которой показана зависимость между качеством воды и численностью тубифицид.

Таблица 3

Плотность олигохет, характеризующая разные степени

загрязнения (по Макрушину, 1974).

Класс чистоты воды

Tubifex tubifex

(тыс. эк/м**2)

р.Limnodrillus

(тыс. эк/м**2)

1 – 2 0.1 – 1 0.1 – 2
2 – 3 1 – 2 2 – 10
3 2 – 10 10 – 50
3 – 4 10 – 50 50 – 100
4 50 – 100 и более более 100

Первый класс чистоты воды соответствует олигосапробной ступени, 2 - b-мезосапробной, 3 - a-мезосапробной и 4 – полисапробной.

В литературе можно встретить различные точки зрения относительно индекса Цанера по численности T. Tubifexи видов рода Limnodrillus.

Финогенова и Алимов (1976) считают, что индекс неплохо отражает степень загрязнения, так как в нем учтена сезонная динамика численности олигохет: граници каждого класса достаточно широки, чтобы вместить сезонные колебания.

Неприменимым в наших условиях считает этот индекс Т.Г.Мороз (1978). Поскольку численность олигохет бывает невилика, отчего оценка чистоты вод не соответствует действительности.

В 1964 г. Кинг и Болл (по Финогеновой, Алимову, 1976) предложили индекс, учитывающий отношение биомассы (В) насекомых и олигохет:


При тяжелом загрязнении индекс соответственно будет 0/1, а в чистой воде 612/1. Но этот индекс не учитывает сезонной динамики численности животных и особенно личинок насекомых. Поэтому одноразовые сборы могут совпасть с периодом минимальной численности, обусловленной вылетом насекомых, а отнюдь не с загрязнением, и привести к неверной оценке (Финогенова, Алимов, 1976).