Материалы дистанционного зондирования получают в результате неконтактной съемки с летательных воздушных и космических аппаратов, судов и подводных лодок, наземных станций. Получаемые документы очень разнообразны по масштабу, разрешению, геометрическим, спектральным и иным свойствам. Все зависит от вида и высоты съемки, применяемой аппаратуры, а также от природных особенностей местности, атмосферных условий и т.п. Главные качества дистанционных изображений, особенно полезные для составления карт, - это их высокая детальность, одновременный охват обширных пространств, возможность получения повторных снимков и изучения труднодоступных территорий. Снимки дают интегрированное и вместе с тем генерализованное изображение всех элементов земной поверхности, что позволяет видеть их структуру и связи. Благодаря этому данные дистанционного зондирования нашли в картографии разнообразное применение: их используют для составления и оперативного обновления топографических и тематических карт, картографирования малоизученных и труднодоступных районов (например, высокогорий). Наконец, аэро- и космические снимки служат источниками для создания общегеографических и тематических фотокарт.
Существует несколько основных направлений применения материалов дистанционного зондирования в целях картографирования:
-составление новых топографических и тематических карт;
-исправление и обновление существующих карт;
-создание фотокарт, фотоблок-диаграмм и других комбинированных фото картографических моделей;
-составление оперативных карт и мониторинг.
Составление оперативных карт - это один из важных видов использования космических материалов. Для этого проводят быструю автоматическую обработку поступающих дистанционных данных и преобразование их в картографический формат. Наиболее известны оперативные метеорологические карты. В оперативном режиме и даже в реальном масштабе времени можно составлять карты лесных пожаров, наводнений, развития неблагоприятных экологических ситуаций и других опасных природных явлений. Космофотокарты применяют для слежения за созреванием сельскохозяйственных посевов и прогноза урожая, наблюдения за становлением и сходом снежного покрова на обширных пространствах и тому подобными ситуациями, сезонной динамикой морских льдов.
Мониторинг предполагает не только наблюдение за процессом или явлением, но также его оценку, прогноз распространения и развития, а кроме того - разработку системы мер по предотвращению опасных последствий или поддержанию благоприятных тенденций. Таким образом, оперативное картографирование становится средством контроля за развитием явлений и процессов и обеспечивает принятие управленческих решений.
Система аэрокосмического мониторинга позволяет регулярно и оперативно проводить:
-инвентаризацию земельного фонда земель сельскохозяйственного назначения;
-ведение земельного кадастра;
-уточнение карты землепользования;
-инвентаризацию селитебных земель, их инфраструктуры (городов, поселков, деревень, в том числе больших "неперспективных" и заброшенных);
-инвентаризацию земель мелиоративного фонда;
-оценку мелиоративного состояния земель и ведение динамического мелиоративного кадастра;
-подготовку и систематическое обновление каталогов земель, находящихся в фонде перераспределения;
-контроль над темпами освоения новых земель;
-разработку экологического обоснования природопользования в районах традиционного и нового сельскохозяйственного освоения;
-планирование рационального землепользования, проведение своевременной инвентаризации очагов (зон) дефляции, водной и ветровой эрозии, деградации почв и растительного покрова;
-инвентаризацию земель, включенных в состав природоохранного, рекреационного и историко-культурного назначения, а также особо ценных земель;
-составление карт динамики природных и антропогенных процессов и явлений;
-составление прогнозных карт неблагоприятных процессов, активизирующихся в результате нерациональной хозяйственной деятельности;
-сопряжение картографической информации со статистическими данными.
Съемки ведут в видимой, ближней инфракрасной, тепловой инфракрасной, радиоволновой и ультрафиолетовой зонах спектра. При этом снимки могут быть черно-белыми зональными и панхроматическими, цветными, цветными спектрозональными и даже - для лучшей различимости некоторых объектов - ложноцветными, т.е. выполненными в условных цветах. Следует отметить особые достоинства съемки в радиодиапазоне. Радиоволны, почти не поглощаясь, свободно проходят через облачность и туман. Ночная темнота тоже не помеха для съемки, она ведется при любой погоде и в любое время суток.
2. Динамика природной среды и экологический прогноз
Для наблюдения за динамикой природной среды целесообразно использовать регулярную съемку нескольких десятков экологических полигонов ("горячих точек"), где неблагоприятные процессы идут особенно интенсивно и захватывают больше площади. Речь идет в первую очередь о космическом слежении за такими процессами, как:
-сокращение площади и падение продуктивности пастбищ в результате опустынивания, перевыпаса, нарушения растительного и почвенного покрова, ветровой эрозии;
-сокращение площади лесов, снижение их возраста и продуктивности, ухудшение состава насаждений вследствие вырубок, заболачивания, эрозии почв;
-поражение лиственных и хвойных лесов, посевов сельскохозяйственных культур вредителями и инфекциями;
-понижение плодородия почв из-за уменьшения содержания гумуса, ухудшения их структуры, водной эрозии;
-сокращение площади пашни вследствие отчуждения земель под несельскохозяйственное использование;
-подтопление, заболачивание, засоление почв в результате гидротехнического строительства и эксплуатации гидромелиоративных систем;
-понижение плодородия и продуктивности земель при осушении болот и пойм;
-сокращение площади лесов, пастбищ и полей, загрязнение почв и повреждение растительности в результате геотехнических работ;
-абразия (разрушение) берегов, просадочные, оползневые и другие изменения геологической среды;
-загрязнение почв и повреждение растительности вокруг городов и промышленных предприятий;
-загрязнение их стоками водных экосистем.
Частота аэрокосмической съемки при изучении динамики экосистем должна зависеть от их особенностей. Среди экосистем выделяют четыре класса:
-стабильные, требующие обновления детальной информации раз в 10 лет и реже;
-слабодинамичные – раз в 6-10 лет;
-умеренно динамичные – раз в 3-5 лет;
-сильнодинамичные – раз в 1-2 года.
Большой интерес представляет моделирование динамики по результатам многократной (повторенной три раза и более) съемки. По фотографиям разных лет за представительный период прослеживаются тренды (т.е. направленные изменения без учета случайных отклонений год от года). Динамика площадей с антропогенными нарушениями (например, рост площади разбитых песков, смытых почв, засоленных земель, горных выработок, отвалов породы и т.п.) хорошо распознаваема на аэрокосмических снимках. Математическое описание тренда отражает тот факт, что экологические события нарастают лавинообразно и содержат в своей основе экспоненту.
Здесь уместно заметить, что, осуществляя мониторинг и составляя прогнозы, ученые, естественно, не ограничиваются пассивным созерцанием неблагоприятных явлений. Аэрокосмические снимки – документы, в соответствии с которыми разрабатываются рекомендации, поступающие в правительственные органы и учитывающиеся при планировании.
Следующим шагом в аэрокосмическом мониторинге является слежение за развитием простых систем типа ресурс-резерв. Здесь уже по повторным снимкам выявляются два тренда, характеризующие увеличение потребления "ресурса" и сокращение "резерва" Точка пересечения этих трендов соответствует году качественного перелома, когда из-за исчерпания резервов начинают уменьшаться ресурсы.
Наконец, наиболее труден аэрокосмический мониторинг сложных, многоэлементных систем. Для анализа их динамики по повторным фотографиям строятся так называемые матрицы переходов, в которые заносятся все площади, изменившие состояние за период времени между съемками. Такой метод дает возможность, во-первых, составить пространственную балансовую модель динамики сложной системы в ближайшем будущем.
3. Использование аэрокосмического мониторинга для изучения природных ресурсов Земли
Структура космической системы изучения природных ресурсов Земли:
Рис. 1 Структура космической системы изучения природных ресурсов Земли
Блок-схема 1. Структура космической системы изучения природных ресурсов
Структура космической системы ИПРЗ принципиально состоит из системы управления структурой и четырех основных подсистем: получения космической информации, дополнительной дистанционной информации, сбора и хранения информации, обработки информации.
Подсистема получения космической информациивключает: космические носители измерительной аппаратуры - искусственные спутники Земли, пилотируемые космические корабли (ПКК) и орбитальные станции (ОС); измерительную аппаратуру, устанавливаемую на космических носителях; аппаратуру, передающую полученнуюинформацию на Землю (на пункты приема информации - ППИ) в подсистему сбора информации. Данные, полученные с помощью космической измерительной подсистемы, содержат для каждого отдельного элемента природного объекта информацию о его состоянии. Эти данные передаются на пункты приема информации и оттуда в банк данных подсистемы сбора информации на хранение.