Решение
1) Средний процент норм выработки для всего цеха определяется по формуле средней арифметической взвешенной
,где
- значение середины интервала для каждого диапазона выполнения норм; - количество рабочих в цехе. .2) Среднее линейное отклонение определяется по формуле
3) Дисперсия определяется по формуле
.4) Среднеквадратическое отклонение определяем по формуле
.5) Коэффициент вариации
.Т.о., можно сделать вывод об однородности представленной совокупности данных.
Задача 6
По городской телефонной сети из 1000 абонентов в порядке механической выборки произвели 100 наблюдений и установили, что средняя продолжительность телефонного разговора 4 мин при среднем квадратическом отклонении 2 мин.
Определить: 1) предельную ошибку репрезентативности (с вероятностью 0,954); 2) вероятность того, что предельная ошибка репрезентативности не превысит 0,3 мин.
Решение
N=1000 – генеральная совокупность
n=100 – выборочная совокупность
tср=4 мин. –
σ=2 мин.
Средняя ошибка выборки
=0,19Δ=t*μ – предельная ошибка
t=2 (коэффициент доверия, которому соответствует вероятность 0,954)
Δ=2*0,19=0,38
Это значит, что с вероятностью 0,954 можно гарантировать, что средняя продолжительность генеральной совокупности телефонных разговоров расположится между 3,62 мин. и 4,38 мин.
Задача № 1
1) Определим величину интервала
I=(8,1-0,5) :4=7,6:4=1,9
Количество заводов по группам.
№группы | Группировка заводов | Среднегодовая стоимость | Валовая продукция в сопоставимых ценах, грн. | Уровень фондоотдачи (%) | |||
к-во шт. | № № | всего | на завод | всего | на завод | ||
1 | 5 | 1,8,12,13,20 | 5,0 | 1,0 | 4,5 | 0,9 | 90 |
2 | 8 | 2,3,5,7,9,11,22,23, | 26,9 | 3,3625 | 26,8 | 3,35 | 99,6 |
3 | 6 | 4,6,10,15,18,21 | 30,3 | 13,3 | 35 | 5,833 | 115,5 |
4 | 5 | 14,16,17,19,24 | 34,8 | 6,96 | 34,5 | 6,9 | 99 |
2) Интервал для групп заводов:
1-я :0,5…2,4
2-я :2,4…4,3
3-я :4,3…6,2
4-я :6,2…8,1
3) Уровень фондоотдачи = (Валовая продукция / стоимость ОФ) * 100%
Выводы:
1) С ростом стоимости основных фондов (ОФ) растет стоимость валовой продукции следовательно между этими показателями существует прямая зависимость.
2) Уровень фондоотдачи не зависит от изменения стоимости ОФ и стоимости валовой продукции.
Имеются данные по двум заводам, вырабатывающим однородную продукцию (табл. 31).
Таблица 31
Номер завода | 1998 год | 1999 год | ||
Затраты времени на единицу продукции, ч | Изготовление продукции, шт. | Затраты времени на единицу продукции, ч | Затраты времени на всю продукцию, ч | |
1 | 2,0 | 150 | 1,9 | 380 |
2 | 3,0 | 250 | 3,0 | 840 |
Вычислите средние затраты времени на изготовление единицы продукции по двум заводам с 1998 по 1999 г.г. Укажите, какой вид средней необходимо применять при вычислении этих показателей.
Решение
Если в статистической совокупности дан признак Xi и его частота fi, то расчет ведется по формуле средней арифметической взвешенной:
(ч)Если дан признак xi , нет его частоты fi, а дан объемM = xifi распространения явления, тогда расчет ведем по формуле средней гармонической взвешенной:
(ч)Вывод: В среднем затраты времени на изготовление единицы продукции в 1998г. выше, чем в 1999г.
Для определения средней суммы вклада в сберегательных кассах района, имеющего 9000 вкладчиков, проведена 10%-я механическая выборка, результаты которой представлены в таблице.
Группы вкладов по размеру, грн. - xi | До 200 | 200-400 | 400-600 | 600-800 | Св.800 | Σ |
Число вкладчиков - fi | 80 | 100 | 200 | 370 | 150 | 900 |
Середина интервала | 100 | 300 | 500 | 700 | 700 | |
x – A=x' - 700 | -600 | -400 | -200 | 0 | +200 | |
(X - A) / i | -3 | -2 | -1 | 0 | 1 | |
((X - A) / I) *f | -240 | -200 | -200 | 0 | 150 | -490 |
((X - A) / I)2 *f | 720 | 400 | 200 | 0 | 150 | 1470 |
Решение:
Для определения средней суммы вкладов способов моментов воспользуемся формулой:
= m1Δ*I+Aiгде: m1 – момент первого порядка
x – варианта
i – величина интервала
f – частота
Δ – постоянная величина, на которую уменьшаются все значения признака.
m1 =(Σ((X-A) / i))*f) / Σf
=(( Σ ((X-A) / i*f) / Σf)*i+A1. Находим середины интервалов
(200 + 400) / 2 = 300 – для закрытых интервалов;
Для открытых интервалов вторая граница достраивается: (0 + 200) / 2 = 100
Величина интервала i = 200.
Наибольшая частота равна 370, следовательно А = 700.
В вариационных рядах с равными интервалами в качестве А принимается вариант с наибольшей частотой.
Число вкладчиков
f=900m1= (-240-200-200+150) / 900=-0,544
=-0,544*200+700=591,2 грн.Вывод: в среднем сумма вкладов составляет 591,2 грн.
m2=1470/900=1,63
σ2=2002*(1,63-(-0,544)2)=53362,56 среднеквадратичное отклонение:
=231 грн.V=(σ/
)*100%=(231/591,2)*100=39,07%4. Предельная ошибка выборки средней вычисляется по формуле:
Δx=t*
2/nΔx=2*
(грн.)где: n – выбранной совокупности, n=900
σ2 – дисперсия
t – коэффициент доверия (табличное значение для вероятности 0,954 соответствует t=2)
Δx=2*
15,4 (грн)Т.о. с вероятностью 0,954 можно сказать, что средняя сумма вкладов в сберкассах района находится в пределах
591,2-15,4 ≤ x ≤ 591,2+15,4
575,8 ≤ x ≤ 606,4
5. Средняя ошибка доли признака
Доля признака в выборочной совокупности:
Р=
=20%μ=
Nт=9000 интегральная совокупность
n=900 – выборочная совокупность
μ =
=0,01265=1,3%Δ=t*M=2*1,3=2,6%
20-6 ≤
≤ 20+2,6 => 17,4 ≤ ≤ 22,6Имеются данные о младенческой смертности на Украине
Год | 1990 | 1995 | 1996 | 1997 | 1998 | 1999 |
Умерло детей в возрасте до 1 года (всего), тыс. чел. | 12,3 | 11,6 | 11,1 | 10,6 | 9,0 | 9,3 |
Для анализа ряда динамики исчислите: 1) абсолютный прирост, темпы роста и прироста (по годам и к базисному 1995 г.), абсолютное содержание 1 % прироста (полученные показатели представьте в виде таблицы); 2) среднегодовой темп роста и прироста младенческой смертности: а) с 1990 по 1996 годы; б) с 1995 по 1999 годы; в) с 1990 по 1999 годы. Изобразите исходные данные графически. Сделайте выводы.
1. Абсолютный прирост (Δi) определяется как разность между двумя уровнями динамического ряда и показывает, на сколько данный уровень ряда превышает уровень, принятый за базу сравнения Δi=yi-yбаз, где yi – уровень сравниваемого периода; yбаз – базисный уровень.
При сравнении с переменной базой абсолютный прирост будет равен Δi=yi-yi-1, где yi – уровень сравниваемого периода; yi-1 – предыдущий уровень.
Темпы роста определяются как процентное отношение двух сравниваемых уровней: