В проекте районной планировки следует предусматривать рациональное зонирование территории и размещение населенных мест, инженерно-технические мероприятия по безотходным технологиям, очистке и утилизации загрязнений, а также природоохранные мероприятия по созданию заповедников, парков и т.д. В результате должны быть обеспечены саморегуляция и воспроизводство воздуха, чистой воды, почвенно-растительного покрова, животного мира. Для достижения равновесного состояния необходимо соблюдать ряд условий:
– обеспечить баланс межрайонных потоков вещества и энергии путем воспроизводства основных компонентов природной среды;
– привести в соответствие геохимическую активность ландшафтов и объем загрязнений природной среды, в том числе обеспечить более низкий уровень загрязнений по отношению к биохимической активности экосистем района, а также физическую устойчивость ландшафтов к транспортным, рекреационным и другим антропогенным воздействиям;
– осуществлять районную планировку с сохранением ненарушенных участков экосистемы, которые могут воспроизвести необходимое количество кислорода, очистить загрязненную воду, произвести нужный объем биомассы.
В качестве примера экологического равновесия рассмотрим необходимую среду вокруг города с населением 1 млн. жителей, имеющего территорию 20 тыс. га (200 км2). При достаточно хорошем озеленении улиц, наличии парков и садов территория такого города производит в год около 25–30 тыс. т кислорода при затратах кислорода на нужды промышленности и транспорта около 10 млн. т. Дефицит кислорода восполняется поступлением его с прилегающих не урбанизированных территорий, причем для рассматриваемого города необходимо не менее 15–20 тыс. км2 естественного ландшафта – лесов, лугов, полей, акваторий – для воспроизводства кислорода. Потребление воды составляет 400–500 млн. м3 в год при сбросе сточных вод 350–450 млн. м3. Для их регенерации нужна площадь водосборного бассейна не менее 15–20 тыс. км2 при среднем модуле поверхностного стока 0,2 л с 1 км2 в сутки. Рядом с городом должны быть рекреационная зона площадью около 15–20 тыс. км 2 с учетом лесистости 15–20 % и сельскохозяйственная для производства продуктов питания из расчета 1 га на одного жителя при распаханности до 50 % – площадью 15–20 тыс. км2. Экологическое равновесие, следовательно, может быть достигнуто не в городе, а только в пределах обширного района или в групповой системе населенных мест, в которой города рассматриваются в неразрывном единстве с ненарушенными или слабо нарушенными природными ландшафтами.
Следовательно, уровень районной планировки (мезотерриториальный уровень) и является первичным материалом для обеспечения экологического равновесия, которое может быть иметь три уровня удовлетворения его условий: полный, условный и относительный. Полное экологическое равновесие достигается только в случае удовлетворения всех условий, что возможно лишь при достаточно больших территориях с плотностью населения не более 50–60 чел. на 1 км2 и лесистости не менее 20–30%, а также благоприятном климате. Условное экологическое равновесие наблюдается при соблюдении только первого принципа, на территориях с плотностью населения не более 100 чел. на 1 км2, при лесистости не менее 20–30%. Относительное экологическое равновесие достигается и при большей плотности населения и меньшей лесистости, причем в этом случае основную роль играют гигиенические, инженерно-планировочные, технологические мероприятия, компенсирующие загрязнение среды.
При проектировании района с экологическим равновесием рекомендуется исходить из основных принципов:
– мозаичности – для сохранения гомеостаза природной среды наряду с мероприятиями в пределах одного ландшафта следует целенаправленно перераспределять антропогенные нагрузки, так как разные ландшафты обладают различной степенью устойчивости;
– иерархичности – при большой территории страны достижимо полное экологическое равновесие в пределах больших областей, районов и всей страны, так как районы с условным и относительным равновесием могут быть уравновешены районами с полным равновесием;
– динамичности – развитие промышленности, урбанизация, рост населения могут привести к трансформации района с полным экологическим равновесием в районы с условным и относительным равновесием, а прогресс науки, техники, социальные достижения в более редких случаях могут вызвать обратный процесс повышения степени экологического равновесия.
Экологическое равновесие непосредственно связано с плотностью населения, характером использования территории. Критические антропогенные нагрузки на урбанизированные территории основаны на гигиенических критериях, на обеспеченности населения зонами различного назначения. Так, ЦНИИП градостроительства для промышленных районов считает обеспеченность территории 3–3,5 тыс. м2 на жителя. В ФРГ предельной (критической) плотностью в городе является плотность 100–1500 чел. на 1км2, т.е. 0,7–10 тыс. м2 на жителя. В США «экологической нормой» считается 30 тыс. м2 на человека, а соотношение урбанизированных, сельскохозяйственных и естественных территорий рекомендуется 1:1:1. В ФРГ это соотношение составляет 28, 42 и 30%, в Польше для ядра агломерации – 3–5 тыс. чел. на 1 км2, а для агломерации в целом – 0,8–2 тыс. Чел. на 1 км2. По-видимому, нужен дифференцированный подход к плотности населения в ядре и периферийной зоне агломерации.
Ввиду того, что экологическое равновесие достигается только при наличии больших естественных ландшафтов, очень важно создание природоохранных зон, национальных и природных парков, садов, озеленяемых территорий, создающих природный (экологический) каркас района. Этот каркас необходим для обеспечения баланса территорий различного назначения, чтобы было достигнуто экологическое равновесие. Площадь, включающая системы расселения, сельского хозяйства, добычи полезных ископаемых, расчитывается по формуле:
,где
– удельный показатель обеспечения территорией на 1 тыс. жителей, км2 (не должен превышать 50–60 чел. на 1 км2); – население i-й групповой системы населенных мест (i=1,..., m), j-го плотно населенного ареала (j =1,..., n), тыс. чел.Зоны экологического равновесия
(по воде) и (по кислороду), определяются по формуле: ; .В расчетах принимается большее значение
или . Здесь – численность населения региональной системы расселения, тыс. чел.; – перспективная ежегодная потребность в топливе, тыс. т условного топлива на 1 тыс. чел.; – среднее значение ежегодно продуцируемого кислорода на i-й территории, тыс. кг; 2,5 – коэффициент перехода для подсчета изъятого из атмосферы кислорода; В – среднее ежегодное водопотребление, тыс. м3 на 1 тыс. чел.; – среднее значение ежегодно продуцируемой воды на j-й территории, тыс. м3.Пространственная структура экологического каркаса расселения характеризуется равномерной сетью населенных мест со связями между собой и зонами развития, экологического равновесия, буферной и компенсационной. Представляют интерес требования к зонам: наибольшей хозяйственной активности с максимальным воздействием на биосферу; экологического равновесия с сетью природных парков, охраняемых ландшафтов, лесистостью не менее 40–50%, запрещением рубки леса (кроме санитарных), ограничением размещения промышленных предприятий, городского и транспортного строительства, комплексом по очистке стоков, поддержанием популяций животных и птиц, буферной на стыке региональных систем расселения (экологический шов) для компенсации экологической неполноценности и обеспечения в перспективе экологического равновесия шириной 100–150 км, с лесистостью не менее 30 %, охраной ландшафтов. Наименее освоенные ландшафты с низкой плотностью населения считаются компенсационными зонами.
Размер (радиус) зоны ограниченного развития определяют по формуле:
,где
– население центрального города, тыс. чел.; – население города-спутника, тыс. чел.; – удельный вес прироста населения города-спутника в суммарном приросте населения системы, %; – число направлений интенсивного роста ядра; – территория, приходящаяся на 1 тыс. жителей с учетом селитебных, промышленно-складских транспортных территорий, лесопарковых зон отдыха, пригородных сельскохозяйственных земель и т.д., км2; – коэффициент наличия непригодных для застройки и сельскохозяйственного производства территорий (акватории, скалы, овраги и т.д.), изменяющийся в зависимости от доли непригодных территорий от 1 до 2; – эмпирический коэффициент лесистости, изменяющийся в пределах от 1 до 2 (при лесистости более 50 % =1, от 30 до 50 – =1,2, от 10 до 30 – =1,5; менее 10 % – =2,0); – эмпирический коэффициент плотности населения, изменяющийся в пределах от 1 до 2 (при плотности населения в радиусе 50 км от центрального города на 1 км2 до 100 чел. – = 1; от 100 до 200 – = 1,2; от 200 до 300 чел. – = 1,5, свыше 300 чел. – = 2).