Смекни!
smekni.com

Закономерности устойчивости почв к деградации под влиянием сельскохозяйственного использования (стр. 18 из 37)

Устойчивость почв к протонной нагрузке увеличивается с утяжелением гранулометрического состава, емкости поглощения доли минералов с высокой емкостью катионного обмена, с увеличением содержания гумуса, суммы поглощенных оснований, СаСО3, MgCO3с увеличением буферности почв в кислом интервале, чаще с увеличением рН среды. Устойчивость почв к протонной нагрузке уменьшается с увеличением подзолистого горизонта и степени оподзоленности, с увеличением продолжительности временного анаэробиозиса, с уменьшением рН опада и увеличением в нем доли допустимых веществ и смол, с увеличением массы опада, на вогнутых склонах и понижениях, при усилении промывного типа водного режима, при усилении элювиального под определенными насаждениями, при увеличении комплексообразующей способности мигрирующих кислых продуктов (при усилении деградации почв и компонентов биогеоценоза по другим параметрам).

Изменение свойств почв при их деградации

Подкисление почв вызывает существенное изменение их свойств. Отмечается снижение минерализации органического вещества до углекислого газа, скорости аммонификации, существенного изменения подвижности железа, марганца, алюминия, вымывание из почв кальция, магния, калия, натрия; изменение емкости поглощения почв. При этом, характер происходящих изменений в разных почвах неодинаков.

При постепенном подкислении почв за счет кислых осадков постепенно протекают следующие химические процессы. При рН=5,6 происходят преимущественно реакции ионного обмена; при рН=3,5 – реакции ионного обмена с вероятным последующим гидролизом соединений алюминия и частичное растворение гидроксидов алюминия; при рН=2,5, кроме перечисленных реакций, происходит частичное разрушение алюмосиликатов и переход в раствор больших количеств алюминия, железа, марганца; при рН=1,5 дополнительно наблюдается адсорбция сульфатов и протонирование органических анионов (Елизарова Э.Г., Орлов Д.С., 1993). По данным авторов, поступление кальция и магния в раствор после обработки почв кислыми осадками осуществляется в результате двух последовательных реакций: быстрой – обменной и медленной – трансформации решеток глинистых минералов. Однако, в разных типах почв преобладающие при подкислении реакции отличаются.

Характер взаимодействия кислотных осадков с почвой зависит от преобладания в почвах органических или минеральных компонентов, рН и Eh почв, генетических особенностей почв. В лесных подстилках подзолистых почв протон кислоты связывается с анионом угольной кислоты и органическими анионами. Способность почвенного раствора нейтрализовать кислоту может быть ориентировочно оценена по содержанию в растворе кальция, магния, калия.

При взаимодействии протона с лесными подстилками в отечественной и зарубежной литературе описаны следующие химические реакции: реакции частичного обмена, реакции растворения солей сильных оснований и слабых кислот с последующим протонированием аниона кислоты, реакции диссоциации органоминеральных комплексов, главным образом, железа и алюминия; реакции протонирования функциональных групп специфических органических почвенных кислот. Указывается на роль в буферных реакциях кальция, калия, марганца. Коробова Н.Л. (1996) отмечает, что основная часть протонной нагрузки (1200 мг-экв/100 г) вступает в буферную реакцию в пределах органогенных горизонтов и расходуется на увеличение необменной кислотности, растворение солей кальция и магния, органических кислот, на замещение протоном обменных оснований.

Методы оценки деградации

Важное практическое значение имеет разработка методов оценки устойчивости почв к подкислению. Для этих целей используют ориентировочную оценку на основании гранулометрического и минералогического состава почв, их емкости поглощения и гумусированности; оценку буферности почв в кислотно-щелочном интервале методом потенциометрического титрования; оценку буферности в кислотно-щелочном интервале, по данным модельных опытов; оценку буферности почв в кислотно-щелочном интервале, по данным полевых исследований.

При оценке деградации почв под влиянием подкисления важное практическое значение имеет определение следующих показателей. 1) Значение рН, до которого может быть изменена конкретная почва до появления в ней такого количества токсикантов (свинца, кадмия, алюминия, марганца), которые вызывают сильную и нейтральную деградацию почв. 2) Значения рН, которые в данной почве резко угнетают развитие растений, биоты, приводит к нейтральной деградации водно-физических свойств почв, к недопустимой, с точки зрения экологии, миграции соединений в грунтовые воды. 3) Количество ионов водорода, которое может поступать в почву для достижения указанных значений рН. Очевидно, что для достижения разных степеней деградации почв требуется и различное количество поступающих в почву ионов водорода. 4) Количество лет, за которое может быть достигнута деградация почв при существующем уровне выпадения кислотных осадков (отдельно для разных почв и элементов рельефа). 5) Количество лет, за которое может быть достигнута деградация почв, за счет подкисления при применении существующей системы земледелия. 6) Допустимые дозы природного и антропогенного кислотного воздействия на почву, компенсируемые естественными процессами почвообразования.

Так, например, по данным Levina E. (1988), критерием считается количество лет, по прошествии которых (при воздействии кислых осадков) будет достигнут критический порог в изменении свойств почв, лишенных растительности. Автор выделяет следующие группы: до 30 лет, 30-60, 60-90 и более 90 лет. При этом почвы с максимальной буферной емкостью имели устойчивость к кислым осадкам до 774 лет. При прогнозе изменения почв под влиянием кислотных осадков большое значение имеет соотношение скорости освобождения катионов из минералов и скорости поступления в почву ионов водорода.

Предельно допустимые уровни воздействия

Предельно допустимые уровни воздействия протонной нагрузки на почву различаются для кислотных выпадений, доз физиологически кислых удобрений или кислых отходов сельскохозяйственного и промышленного производства, концентраций ионов водорода, появляющихся в почвах в результате протекающих почвообразовательных процессов и принятых систем земледелия. При этом предельно допустимыми являются значения рН, содержание ионов водорода в почве и их доля среди обменных катионов в ППК. С агрономической точки зрения, неблагоприятными для выращивания большинства с/х культур являются почвы с рН(КС1) менее 5,5 и степенью насыщенности основаниями менее 75%. В этом случае рекомендуется известкование почв.

Среди методов определения критических нагрузок выделяют следующие: подсчет выноса элементов в процентах от их поступления; оценку изменения молярных соотношений между элементами питания; определение степени угнетения растительности и флористического состава напочвенного покрова; использование балансового метода и расчет критических нагрузок с помощью математических моделей. Существуют различные классификации чувствительности почв к кислым осадкам. По классификации Mc.Fee(1980), величину предельной кислотной нагрузки относят к емкости поглощения почв.

Пороговые значения протонной нагрузки составляют, по данным различных авторов, следующие величины: Для серой лесной почвы и чернозема соответственно: 882 и 912 к-экв/га в год (Елизарова Э.Г., Орлов Д.С., 1993). Для дерново-подзолистых почв – 2-6 к-экв/га в год (Киселева В.В., 1998). Для чувствительных к подкислению почв – 117 к-экв/га в год (Leyine, 1988). По данным Киселевой В.В. (1998), протонная нагрузка от НПО «Азот» в период интенсивного загрязнения в десятки раз превосходила скорость освобождения кальция, магния, калия при выветривании минералов и составляла 30 к-экв/га в год. После снижения загрязнения протонная нагрузка в большинстве профилей дерново-подзолистых почв не превышала 0,5 к-экв/га в год, что меньше или равно скорости освобождения катионов при выветривании. По данным указанного автора, критические нагрузки, в зависимости от свойств почв и экосистем составляют 0,3-3 кг/га для протонов и 3-50 кг/га – для азота.

На основании определения рН почв для целей сельскохозяйственного использования, составляют картограммы кислотности почв в масштабе 1:10000; 1:5000; 1:25000. На основании таких картограмм рассчитывают дозы и количество извести, которые необходимо внести на отдельные поля, севообороты, хозяйство. Для оценки общей ситуации с подкислением почв составляются обзорные карты степени кислотности отдельных районов, областей. Они позволяют определить территории с наиболее неблагополучным кислотно-основным состоянием почв, как с точки зрения выращивания сельскохозяйственных культур, так и с точки зрения экологической оценки почв. На основании анализа свойств почв и интенсивности выпадения кислотных осадков составляются карты-схемы опасности деградации почв за счет подкисления.

Пути оптимизации обстановки

Для повышения рН почв, в основном, применяется известкование – внесение в почвы СаСО3 в дозе от 2 до 10 т/га, в зависимости от степени кислотности, количества поглощенных ионов водорода и свойств почв. В ряде стран обработкой СаСО3 подвергаются также леса и озера, что позволяет улучшить развитие древесных культур, состояние биоты в водоемах, уменьшить содержание тяжелых металлов в грунтовых и речных водах. При этом, необходимость известкования определяется по величине рН почв, а доза извести рассчитывается по количеству в почве поглощенных ионов водорода. Для почв разного гранулометрического состава и гумусированности, в зависимости от выращиваемых культур, оптимальные значения рН неодинаковы.