Смекни!
smekni.com

Закономерности устойчивости почв к деградации под влиянием сельскохозяйственного использования (стр. 27 из 37)

15. Использование в сельском хозяйстве пестицидов, как фактор риска

функционирования экосистем

Значимость проблемы

По оценке ФАО (1989) каждый год от насекомых вредителей, болезней растений и сорняков мировое сельское хозяйство несет убытки в 75 млрд. долларов. Потенциальные потери урожая в России достигают 71,3 млн. т зерновых единиц: на долю возбудителей болезней приходится 45,1% потерь, сорных растений – 31,4%, вредителей растений – 23,5% (Соколов М.С. и др., 1994). Для отдельных культур потери приведены в таблице 19.

Большое количество питательных веществ непроизводительно отчуждается из удобрений и почвы сорняками. При средней засоренности посевов сорняки выносят не менее 200 кг/га NPK. При засоренности в России 98% площадей общий вынос питательных веществ сорняками составляет 10-12 млн. т в год или около половины питательных веществ производимых в стране минеральных удобрений (Минеев В.Г., 1990).

Таблица 19

Потери урожая сельскохозяйственных культур в мировом земледелии

(Соколов М.С. и др., 1994)

Культура : Потери урожая в % от

:-------------------------------------------------------------------------------------

: вредителей : болезней : сорняков : итого

пшеница 5,0 9,1 9,8 23,9

кукуруза 12,4 9,4 13,0 34,8

просо, сорго 9,6 10,6 17,8 38,0

рис 26,7 8,9 10,8 46,4

хлопчатник 11,0 9,1 4,5 24,6

соя 4,5 11,1 13,5 29,1

картофель 6,5 21,8 4,0 32,3

томаты 7,5 11,6 5,4 24,5

Защита растений от вредителей и болезней, уничтожение сорняков создает условия для формирования высоких урожаев с/х культур. Однако, использование пестицидов приводит к существенным негативным последствиям для многих компонентов экосистемы. В 1987 году 30% продуктов питания в России содержали концентрацию пестицидов, опасную для здоровья. Систематическое применение гербицидов (подряд 3 года и более) полностью снижает эффект от нового, более эффективного сорта или гибрида (Шатилов И.С., 1991).

Установлено, что от прямого отравления пестицидами в мире ежегодно погибает около 10 тысяч человек, гибнут леса, птицы, насекомые. Значительная часть пестицидов оказывает мутагенное действие. В настоящее время отмечаются высокие загрязнения почв фосфорорганическими пестицидами (фозалоном, метафосом), гербицидами (2,4-Д, трефланом, трихлорацетатом натрия и др.).

Экологические последствия применения пестицидов

Применение пестицидов является важным фактором увеличения урожайности с/х культур, однако, чаще связано со значительными отрицательными экологическими последствиями:

1) Появляются новые виды болезней, вредителей, сорняков, которые раньше не являлись конкурентами для получения урожая.

2) Разрушаются связи в биогеоценозах.

3) При появлении устойчивости к препаратам происходит вспышка численности отдельных видов.

4) Происходит значительное уничтожение насекомых-опылителей цветковых растений (погибает до 10-20% пчелиных семей); при этом больше гибнут сильные особи, посещающие большее количество обработанных пестицидами растений.

5) После освобождения с помощью гербицидов от сорняков «первого поколения» поля заселяют более устойчивые к ним виды.

6) Происходит гибель животных и птиц (в 70-х годах, в СССР от отравления погибло до 40% лосей, кабанов, зайцев; более 77% боровой дичи; более 30% рыб.

7) Возрастает устойчивость к пестицидам – резистентность.

8) Угнетаются биологические процессы в почвах, происходит гибель отдельных групп микроорганизмов (медьсодержащие пестициды угнетают процесс нитрификации; возможна стерилизация почвы, доминирование фитопатогенных микроорганизмов).

9) Происходит загрязнение вод (по данным Каспийского НИРХа, в нижнем течении Волги содержание ядохимикатов иногда превышает допустимые нормы в тысячи раз. Нетоксичных для человека пестицидов нет. Существует вероятность аллергенных, гонадотоксичных, канцерогенных, кожно-резорбтивных, мутагенных, бластомогенных, эмбриотоксичных и эмбриотропных воздействий на людей (Мосина Л.В., 2000).

10) Остаточные количества пестицидов аккумулируются и биокоцентрируются в пищевых (трофических) цепях.

11) Происходят генетические изменения в организмах растений, животных и человека, других биообъектах; нарастает вероятность отдаленных последствий.

К районам экологического риска относятся районы рисосеяния, овощеводства, многолетних плодовых насаждений.

Для прогноза поведения пестицидов в почвах важна их классификация, в зависимости от поведения при адсорбции. Выделяются катионные пестициды (дипиридилы), щелочные (симтриазины), кислые (симтриазоли, хлорфеноацетатная кислота, бензойная кислота, пиколиновая кислота, фенолы), неионные пестициды (органо-галогенные углеводороды, фосфорорганические соединения, динитроанилин, фенилкарбаматы, фенилмочевина, анилид, фениламид, тиокарбонаты, бензонитрилы) (Реуце К., 1986).

Превращение пестицидов в почве

Поглощение пестицидов почвами

По данным Горбунова Н.И. и Орлова Д.С. (1977), поглощение органических веществ минеральной частью почвы зависит от следующих факторов: 1) структурно-геометрических условий – межслоевого расстояния в минералах, размера и формы молекул органических веществ, их конденсатов, микрорельефа, поверхности минералов; 2) природы сил связи; 3) химического состава реагирующих частиц; 4) состояния веществ – степени пептизации, дисперсности, окристаллизованности, старения, состояния геля или золя, гидрофильности и гидрофобности, присутствия и размера защитных пленок; 5) условий среды.

По данным ряда авторов, адсорбция пестицидов почвами зависит от типа почв и характеризуется константой адсорбции, которая является относительно постоянной величиной. Адсорбция зависит от емкости обмена почв, рН, содержания органического вещества (Osgerby J.M., 1973), от химического сродства компонента к почве ( Xaron Bruno, 1975), от удельной поверхности почв (Mustafa M.A., 1972), от насыщенности почв основаниями (Singhal J.P., 1976), от образования комплексов, степени разбухания минерала, слоевого заряда, концентрации пестицида, времени взаимодействия, природы обменных катионов (Sanchez Camazano M, 1977), от содержания органического вещества и глины (Witt W.W., 1975). Очевидно, что для разных групп пестицидов природа их сорбции будет неодинаковой, а следовательно, и разные свойства почв будут в наибольшей степени определять адсорбцию.

Важное значение при оценке поведения пестицидов в почвах имеет природа их сорбции. Muller-Wegener U. (1977) установлено, что гуминовые кислоты образуют с симм-триазинами электронные донорно-акцепторные комплексы. По данным Gumar Y. (1975), адсорбция диквата и пераквата почвами аридной зоны подчинялась линейной форме уравнения Лонгмюра и включала два механизма – сильную адсорбцию и адсорбцию обменной природы, обусловленную электростатическими взаимодействиями. Singhal J.P. (1976) отмечает для адсорбции никотина на каолините и телона на иллите хемосорбцию.

Реуце К. (1986) приводит следующие механизмы адсорбции пестицидов: а) адсорбция силами Ван-дер-Ваальса – включение в процесс адсорбции неионных молекул пестицидов в недиссоциированном состоянии на почвенных адсорбентах (адсорбция карбарила и паратиона почвенным органическим веществом, а также пиклорама гумусовыми веществами); б) адсорбция гидрофобными взаимодействиями путем связывания гидрофобных участков неполярной части молекулы органического вещества почвы с пестицидом (этот тип связи характерен для адсорбции хлорорганических инсектицидов на органическом веществе почвы, он чаще не зависит от рН); в) адсорбция водородными связями, при которой атом водорода формирует мостик между двумя отрицательно заряженными атомами (один из них связан ковалентной связью, а другой – электростатическими силами; этот механизм проявляется при адсорбции симм-триазинов органическим веществом почвы, а также органических пестицидов глинистыми минералами); г) адсорбция передачей электронов от доноров к акцептору (этот механизм связи отмечается при образовании комплексов между гумусовыми веществами и гербицидами на основе дипиридилов); д) адсорбция за счет ионного обмена, что отмечается при адсорбции таких гербицидов, как паракват и дикват органическим веществом и глинистыми минералами; при сорбции пестицидов со слабощелочной реакцией; е) адсорбция за счет образования координационных связей путем обмена лигандами (это отмечается в том случае, когда ионы переходных металлов становятся центрами адсорбции на поверхности илистых частиц.

При поглощении пестицидов почвой возможно как катализирование, так и ингибирование их разложения. Ингибирование их разложения будет наблюдаться при их сорбции в межпакетном пространстве минералов, при блокировке их различными пленками, при увеличении прочности связи с твердой фазой функциональных групп сорбата, подвергающихся разложению. Увеличение разложения и его катализ будут наблюдаться в том случае, если при сорбции функциональные группы сорбата, подвергающиеся разложению будут связаны с остальной молекулой и твердой фазой менее прочно, а также в том случае, если будут созданы лучшие условия развития микроорганизмам, участвующим в разложении.

Разложение пестицидов в почве

Пестициды в почве подвергаются разложению, обусловленному небиотическими и биотическими факторами и процессами. Небиотическое разложение глины, окислы, гидроокислы и ионы металлов выполняют роль катализаторов в реакциях разложения пестицидов. При участии воды идет гидролиз пестицидов. Свободные радикалы гумусовых веществ изменяют устойчивость молекул гербицидов к разложению. Рэуце К. (1984) выделяет следующие пути небиотического разложения пестицидов: 1) Разложение при гидролизе, особенно хлорорганических инсектицидов, триазиновых гербицидов, на которое оказывает влияние температура, влажность, рН. Гидролиз сильнее протекает на почвах с сильно кислой реакцией среды и при большом содержании органического вещества. Влажность почв, состав обменных катионов и минералогический состав влияют на разложение пестицидов очень существенно, но для разных групп пестицидов установлены свои зависимости. 2. Реакции разложения окислительно-восстановительного типа, которым подвергаются серосодержащие пестициды. 3. Разложение, связанное с образованием нитрозосоединений. Реакции протекают при величине рН=3-4 и при избытке нитратов. 4. Реакции разложения, связанные с присутствием в почве свободных радикалов. 5. Фотохимическое разложение пестицидов под действием солнечной радиации.