Введение
Взаимодействие человека с природой - одна из наиболее сложных и трудно разрешимых проблем современности. Сегодня стало очевидным, что задачи сохранения окружающей среды и экономического развития взаимосвязаны: разрушая и истощая природную среду невозможно обеспечить устойчивое экономическое развитие.
Формирование комплексной и гармоничной системы природопользования - важная проблема, стоящая перед человеком.
Целью данной работы является изучение экологических систем, сукцессии и ее видов.
Рабочей гипотезой выдвинуто предположение что, изучение данной темы будет эффективным при условиях:
· изучения экологической пирамиды;
· рассмотрение видов сукцессии;
· изучение стабильности и развития экосистем.
Основными задачами работы являются:
· объяснить понятие и сущность экосистемы;
· определить виды экологической сукцессии;
· изучить пути решения проблемы взаимодействия человека с природой.
1. Экологические системы
1.1. Состав и структура экологической системы. Экологическая пирамида
Экологическая система - основная функциональная единица экологии, включающая в себя живые организмы (биоценоз) и среду обитания (экотоп), причем каждая из этих частей влияет на другую и обе необходимы для поддержания жизни.
Экосистемы представляют собой основные природные единицы на поверхности Земли. Это не только комплекс живых организмов, но и все сочетания физических факторов. Всюду, где можно наблюдать отчетливое единство растений и животных, объединенных отдельным участком окружающей среды, говорят об экологической системе.
Понятие экосистемы не ограничивается какими-то признаками ранга, размера, сложности и происхождения. Поэтому оно применимо как к относительно простым искусственным (аквариум, теплица, пшеничное поле), так и к сложным естественным комплексам организмов и среды их обитания (озеро, лес, океан).
В состав экосистемы входят неживые и живые компоненты (таблица)
Неживые (абиотические) компоненты | Живые (биотические) компоненты | ||
название | описание | название | описание |
1) неорганические вещества | (N2, C02, Н2О и др.), включающиеся в природные круговороты | 1) продуценты | автотрофные (самостоятельно питающиеся) организмы, главным образом, зеленые растения, которые создают органические вещества из простых неорганических веществ. Автотрофы составляют основную массу всех |
продолжение таблицы
Неживые (абиотические) компоненты | Живые (биотические) компоненты | ||
название | описание | название | описание |
живых существ и полностью отвечают за образование всего нового органического вещества в любой экосистеме, т.е. являются производителями продукции | |||
2) органические соединения | углеводы, белки, аминокислоты, гумусовые вещества и др., связывающие биотическую и абиотическую части экосистем | 2) макроконсументы (консументы 1, 2 и т.д. порядка) | гетеротрофные (питающиеся другими) организмы, главным образом, животные, которые поедают растения и другие организмы. В отличие от автотрофов продуцентов, гетеротрофы выступают как потребители и разрушители органических веществ. |
3) климатический режим | освещенность, температура, влажность и другие физические факторы. | 3) микроконсументы (редуценты) | гетеротрофные организмы, преимущественно бактерии и грибы, которые разрушают сложные соединения мертвой протоплазмы, поглощают некоторые продукты разложения и высвобождают неорганические питательные вещества, пригодные для использования продуцентами |
Таблица
Компоненты входящие в состав экосистемы.
Структура экосистемы. В зависимости от характера питания в экосистеме строится экологическая пирамида (пирамида питания), состоящая из нескольких трофических уровней:
1) (низший) занимают автотрофные организмы;
2) гетеротрофные организмы 1 порядка, использующие в пищу биомассу растений;
3) гетеротрофы 2 порядка, питающиеся гетеротрофами 1 порядка, и т.д.
В наземных экосистемах масса продуцентов больше, чем масса консументов, масса консументов 1-ого порядка больше, чем консументов 2-ого порядка и т.д. Это обусловлено тем, что пища используется не только на рост организмов, но и на удовлетворение энергетических затрат: дыхание, движение, размножение, поддержание температуры. Поэтому графически модель экосистемы имеет вид пирамиды (Рис. 1).
Рис. 1. Экологическая пирамида
1. Продуценты (растения); 2. Консументы 1порядка (травоядные)3. Консументы 2 порядка (плотоядные, хищники); 4. Конечные консументы
Изучение пpиpодных экосистем в общем случае производится в стpуктуpном и функциональном аспектах. В стpуктуpном отношении исследуется видовой состав экосистемы: выясняется пеpечень видов микpооpганизмов, pастений и животных, населяющих экосистему, их количественное соотношение.
Информация, в экологических системах может пониматься как энергетически слабый сигнал, управляющий системой. Например, он может восприниматься ее организмами в форме закодированного сообщения о возможности многократно более мощных влияний со стороны других организмов, либо факторов среды, вызывающих их ответную реакцию. Так, слабые и совершенно нечувствительные для человека подземные толчки - предвестники более мощного разрушительного землетрясения, воспринимаются многими животными, своевременно покидающими свои норки.
Таким образом, информационная сеть экосистемы состоит из потоков сигналов физико-химической природы и определяет ее кибернетические возможности (кибернетика - искусство управления, гр.). Управление в экосистемах основывается на обратной связи, изображаемой обратной петлей, по которой часть сигналов с выхода системы поступает обратно на ее вход (рис.2). При этом их влияние на управление системой может резко усилится. В природе часто низкоэнергетические сигналы вызывают высокоэнергетические реакции.
Рис. 2. Механизм обратной связи
Понятие экологической системы иеpаpхично. Это означает, что всякая экологическая система опpеделенного уровня включает в себя pяд экосистем предыдущего уровня, меньших по площади и сама она, в свою очеpедь, является составной частью более кpупной экосистемы. Hапpимеp, пpавомеpно pассматpивать в качестве экосистемы аласную впадину, огpаниченную склонами межаласной возвышенности (рис.4). В свою очеpедь, эта система обычно включает в себя остаточное озеpо, болотные и луговые растительные сообщества со всеми населяющими его живыми существами. В качестве элементаpной экосистемы можно пpедставить себе кочку или мочежину на болоте, а более общей экосистемой, охватывающей множество аласов и межаласные пpостpанства, явиться соответствующая залесенная повеpхность теppасы или пенеплена.
Пpодолжая этот pяд ввеpх можно подойти к экологической системе Земли - биосфере, а двигаясь вниз - к биогеоценозу, как элементарной биохорологической (хора - пространство, гр.) единице биосферы. Учитывая pешающее значение на pазвитие живого вещества Земли зональных фактоpов, пpавомеpно пpедставить себе такой теppитоpиальный pяд соподчиненных экосистем:
· элементаpные
· локальные
· зональные
· глобальные.
И снова видно, что гpаницы экологических систем всегда откpыты. Однако, пpи этом подpазумевается некоторое теppитоpиальное огpаничение, необходимое и достаточное для получения нужных pезультатов исследования.
1.2. Биотический круговорот веществ и энергия в экологической системе
Круговорот веществ в экосистеме называется биотическим. Перенос вещества и энергии в нем осуществляется, в основном, посредством трофических (пищевых) цепей.
Трофической (пищевой) цепью называется перенос энергии пищи от ее источника - растений через ряд организмов путем поедания одних организмов другими. В основе этого процесса лежит следующая химическая формула:
C02 + H20 + Q
CnHmOk + 02.Схема переноса веществ и энергии в природных экосистемах представлена на рисунке 2.
Рис.2. Схема переноса веществ и энергии в природных экосистемах.
Экологическую систему можно представить в виде диаграммы потока энергии (рис. 3).
Рис.3. Потоки энергии в простой трофической цепи.
Отдельные трофические уровни в ней изображены как резервуары, размер которых соответствует количеству энергии заключенной в них биомассы, а поперечник соединяющих их каналов - величине потоков энергии.
Энергия в экологическую систему попадает в виде потока солнечной энергии L. Большая часть ее (Lu) рассеивается в виде теплоты. Часть энергии, эффективно поглощенная растениями (La), преобразуется фотосинтезом в энергию химических связей углеводов и других органических веществ (Pg). Часть образовавшегося вещества окисляется в процессе дыхания растений, освобождая энергию R, а также используется в других биохимических процессах растений и в конечном счете рассеивается в виде тепла (Na). Оставшаяся часть новообразованных органических веществ обусловливает прирост биомассы растений РП|.