L3=1082.
2.2.4. Выбор обратного клапана на напорной линии
Обратный клапан препятствует обратному току через насос воды, находящейся в напорном трубопроводе, который может вызвать следующие нежелательные последствия:
1) опорожнение напорных водоводов через насос;
2) обратное вращение насоса; в этом случае насос будет работать как водяная турбина, а электромотор превратиться в генератор, работающий без нагрузки, что опасно для целости насоса и мотора.
Обратный клапан устанавливается между напорным патрубком насоса и задвижкой. Это позволяет отключать его от водопровода во время ремонта клапана.
Обратный клапан подбираем на давление 10 кг/см2 и диаметр условного прохода D0 =600 мм по [4, с.179]. Выбираем весом 1215 кг, тип 19ч16р, кол-во отверстий 1 шт. Рис. 4.
Габаритные размеры (в мм):
L = 1300,
L1 = 723,
H = 648,
D = 835,
d0 = 100,
d=240
2.3. Выбор электродвигателя
Тип электродвигателя определяется по требуемой мощности электродвигателя
N=520 кВт и числу оборотов насоса n=960 об/мин. Из [5] принимаем двигатель ДА304-450Х-4У1 весом 3350 кг, мощностью 630 кВт и с частотой вращения 960 об/мин. КПД двигателя равно 94,3%, с удельной массой 5,2 кг/кВт.
Габаритные размеры (в мм):
b10=900,
b11 = 1040;
b30 = 1420;
b31 = 760;
d1 = 110;
h = 450;
h5 = 116;
h37 = 1410;
h34=205;
l10 = 1000;
l11 = 1290;
l30 = 2110;
l31 = 224;
l34=8
2.4. Определение отметок оси насоса и пола насосной станции
2.4.1. Определение отметки оси насоса
Отметку оси насоса определим по формуле:
Ñ1 = ÑУВmin - Dhвс, (2.13)
где ÑУВmin - минимальный уровень воды в реке, равный 99,0 м,
Dhвс,-общие потери напора на всасывающей линии, включая потери на сороудерживающем оборудовании, равные 1 м.
Ñ1 = 99,0 - 1 = 98,0 м
2.4.2. Определение отметки верха фундамента насоса
Отметку верха фундамента насоса определим по формуле:
ÑФн = Ñ1 - А1 , (2.14)
где А1 - расстояние от оси насоса до фундамента, равное 850 мм (габаритный размер насоса Е)
ÑФн = 98,0 - 0,85 = 97,15 м
Принимаем ÑФн = 97,2 м
2.4.3. Определение отметки пола насосной станции
Ñ П = ÑФн - 0,7 м (2.15)
Ñ П = 97,2 - 0,7 = 96,5 м
2.4.4. Определение верха отметки фундамента станции
ÑФн.с. =Ñ П - 0,3 м (2.16)
ÑФн.с. = 96,5 - 0,3 = 96,2 м
2.4.5. Определение отметки дна котлована для насосной станции
Ñ 2 = ÑФн.с. - 1,5 м , (2.17)
где 1,5 м - толщина фундаментной плиты.
Ñ 2 = 96,2 - 1,5 = 94,7 м
2.5. Определение размеров сороудерживающих решеток
2.5.1. Определение площади решеток
Требуемая площадь решеток определяется по формуле:
, (2.18)
где [v] - допускаемая скорость на решетке, равная 0,1…0,3 при заборе воды из шугоносной реки с растительным загрязнителем через затопленный водоприемник,
- коэффициент, учитывающий стеснение потока стержнями решеток:, (2.19)
где a - расстояние между стержнями решеток в свету, равное 50 мм,
d - диаметр стержней решетки, равный 6 мм,
- коэффициент, учитывающий засорение решеток, равный 1,25.Тогда:
м22.5.2. Определение габаритных размеров решеток, их количества и веса
Зададимся количеством окон водоприемника. Пусть их будет 4. Тогда требуемая площадь одной сетки равна
м2 . Зададимся стандартной высотой решетки мм. Тогда ширина решетки равна м, что также соответствует стандарту. Вес решетки определяется из расчета 70 кг на 1 м2 площади решетки, следовательно, вес одной решетки составляет 280 кг.Таким образом, окончательно выбираем 4 окна, в каждом из которых установлена сороудерживающая решетка 2000´2000 мм, весом 280 кг.
Для очистки решетки от растительных загрязнений применяется грейфер.
2.5.3. Определение величины заглубления окон
Уровень верха водоприемного окна определяется по формуле:
ÑО = ÑУВmin - dлgл, (2.20)ÑО = 99,0-1,0 = 98,0 м.
2.6. Определение размеров сеток
2.6.1. Определение требуемой рабочей площади сетки
Выбираем сетку вращающуюся бескаркасного типа с лобовым подводом воды. Сетки этой конструкции имеют ряд достоинств по сравнению с сетками других конструкций: они обладают наилучшими гидродинамическими условиями работы, так как поток подходит к сетке равномерно по всему фронту сетки и спокойно; промывное устройство действует эффективно, все загрязнения смываются и не попадают в зону очищенной воды. Отсутствие каркаса сокращает расход металла, конструкция всего агрегата несложна и компактна, занимаемая агрегатом площадь минимальна.
Технические данные:
1) расчетный расход воды 1,5-2,5 м3/с,
2) ширина полотна сетки 2 м,
3) скорость движения полотна сетки 3,82 м/мин,
4) размер ячеек в свету 3´3 мм,
5) сетка применима при колебаниях уровня воды до 15 м.
Требуемая рабочая площадь сетки определяется по формуле:
, (2.21)
где [v] - допускаемая скорость на сетке, равная 0,4 м/с при наличии растительного загрязнителя в водоеме-источнике,
- коэффициент, учитывающий стеснение потока сеткой:, (2.22)
где a - размер ячейки сетки в свету, равное 3 мм,
d - диаметр проволоки полотна сетки, равный 0,6 мм,
- коэффициент, учитывающий засорение сетки, равный 1,25, - коэффициент, учитывающий стеснение потока рамкой, равный 1,20.Считаем, что насосную станцию обслуживают 4 сетки.
м2Требуемая площадь одной сетки равна
м22.6.2. Определение рабочей высоты сетки и величины заглубления
Определим рабочую высоту сетки:
м.Таким образом, заглубление низа сетки под УВmin составит 2,0 м.
2.7. Определение высоты здания насосной станции
Высота машинного зала представляет собой сумму высот подземной части и верхнего строения.
2.7.1. Определение высоты подземной части здания насосной станции
Высота подземной части определяется по формуле:
hп.ч. > hф + hнас + HS,доп + DНБ + hзап , (2.23)
где hф - толщина фундаментной плиты, равная 1,5 м,
hнас - высота насоса от верха фундаментной плиты до оси рабочего колеса, равная 2,05м,
HS,доп - высота всавывания, равная 1 м,
DНБ - амплитуда колебаний воды в источнике, равная 8,3 м,
hзап - необходимое превышение отметки пола верхнего строения над максимальным уровнем воды в источнике, принимается равным 2 м.
hп.ч. = 1,5+2,05+1+8,3+2,0 =14,85 м.
Глава 3. Расчет здания станции на сдвиг и всплытие
3.1. Расчет здания насосной станции на всплытие
Расчет здания насосной станции на всплытие выполняем по первому предельному состоянию. Критерием устойчивости является соблюдение неравенства:
, (3.1)
где
- расчетное обобщенное силовое воздействие, - расчетная обобщенная несущая способность сооружения или основания,Расчетное обобщенное силовое воздействие равно силе противодавления:
, (3.2)
где
- напор на здание станции, равный 13,8 м, - размеры здания станции в плане, 21,1´23,4, - удельный вес воды, 1 т/м3 . тсРасчетная несущая способность равна весу станции вместе с оборудованием:
R = Gф + Gст + Gоб , (3.3)
где Gф - вес фундаментной части, т,
Gст - вес стен, т,
Gоб - вес оборудования, т.
Gф =
тсGст =
тсGоб =88,7 тс
Тогда:
Вывод: здание станции устойчиво к всплытию.
3.2. Расчет здания насосной станции на сдвиг
Расчет выполняем по первому предельному состоянию с целью обеспечения несущей способности основания.