Экстракция
При относительно высоком содержание в производственных сточных водах растворенных органических веществ, представляющих техническую ценность (например, фенолы и жирные кислоты), эффективным методом очистки является экстрация органическими растворителями – экстрагентами. Экстракционный метод очистки производственных сточных вод основан на распределении загрязняющего вещества в смеси двух взаимонерастворимых жидкостей соответственно его растворимости в них. Отношение взаимно уравновешивающихся концентраций в двух несмешивающихся (или слабосмешивающихся) растворителях при достижении равновесия является постоянным и называется коэффициентом распределения.
Коэффициент распределения зависит от температуры, при которой производится экстракция, а также от наличия различных примесей в сточных водах и экстрагенте. /20/.
После достижения равновесия концентрация экстрагируемого вещества в экстрагенте значительно выше, чем в сточной воде. Сконцентрированное в экстрагенте вещество отделяется от растворителя и может быть утилизировано. Экстрагент после этого вновь используется в технологическом процессе очистки.
Метод экстракционной очистки экономически целесообразен при значительной концентрации органических примесей или при высокой стоимости извлекаемого вещества. Для большинства продуктов применение экстрации рационально при концентрации 2 г/л и более. /21/
Для успешного протекания процесса экстрации экстрагент должен иметь следующие свойства: хорошую экстрагирующую способность по отношению к экстрагируемому веществу, т.е. высокий коэффициент распределения; селективность, т.е. способность экстрагировать из воды одно вещество или определенную их группу; малую растворимость в воде; плотность, отличающуюся от плотности воды; температуру кипения, значительно отличающуюся от температуры кипения экстрагируемого вещества; небольшую удельную теплоту испарения и малую теплоемкость, что позволяет снизить расходы пара и охлаждающей воды; возможно меньше огне- и взрывоопасность, токсичность; низкую стоимость.
Экстрагент не должен подвергаться заметному гидролизу и взаимодействовать с экстрагируемым веществом, материалом трубопроводов и запорно-регулирующей арматуры экстракционной установки.
Методы экстрагирования органических веществ по схемам контакта экстрагента и сточной воды можно разделить на перекрестноточные, ступенчато-противоточные и непрерывно-противоточные. Прямоток в процессах экстракции не применяется. /22/
Ионный обмен
Гетерогенный ионный обмен, или ионообменная сорбция – процесс обмена между ионами, находящимися в растворе, и ионами, присутствующими на поверхности твердой фазы – ионита.
Очистка производственных сточных вод методом ионного обмена позволяет извлекать и утилизировать ценные примеси (соединения, мышьяка, фосфора, а также хром, цинк, свинец, медь, ртуть и другие металлы), ПАВ и радиоактивные вещества, очищать сточную воду до предельно допустимых концентраций с последующим ее использованием в технологических процессах или в системах оборотного водоснабжения.
По знаку заряда обменивающихся ионов иониты делят на катиониты и аниониты, проявляющиеся соответственно кислотные и основные свойства. Иониты подразделяются на природные и искусственные, или синтетические. Практическое значение имеют неорганические природные и искусственные алюмосиликаты, гидроокиси и соли многовалентных металлов; применяются также иониты, полученные химической обработкой угля, целлюлозы и лигнина /23/.
Однако ведущая роль принадлежит синтетическим органическим ионитам – ионообменным смолам.
Различают следующие виды ионитов:
1) сильнокислотные катиониты, содержащие сульфогруппы SО3Н и сильноосновные анионы, содержащие четвертичные аммониевые основания;
2) слабокислотные катиониты, содержащие карбоксильные СООН и фенольные группы, диссоциирующие при рН>7, а также слабоосновные аниониты, содержащие первичные NН2 и вторичные NН аминогруппы, диссоциирующие при рН < 7;
3) иониты смешанного типа, проявляющие свойства смеси сильных и слабых кислот или оснований /24,26/.
Важнейшим свойством ионитов является их поглотительная способность, так называемая обменная емкость. Полная емкость ионита – количество находящихся в сточной воде грамм-эквивалентов ионов, которое может поглотить 1 м3 ионита до полного насыщения. Рабочая емкость ионита – количество находящихся в воде грамм-эквивалентов ионов, которое может поглотить 1 м3 ионита до начала проскока в фильтрат поглощаемых ионов.
При соприкосновении ионитов с водой происходит их набухание вследствие осмотических явлений; объем ионитов обычно увеличивается в 1,2 – 2 раза. На кинетику ионного обмена влияют также величина температуры, концентрация ионов и др.
Характерной особенностью ионитов является их обратимость, т.е. возможность проведения реакции в обратном направлении, что и лежит в основе их регенерации.
Регенерация слабоосновных анионитов достигается фильтрованием через слой анионита 2-4%-ных водных растворов NаОН, Nа2СО3 и NН4ОН.
Регенерация катионитов осуществляется промывкой кислотой (при Н – катионите) или раствором хлористого натрия (при Nа – катионите).
Процесс ионообменной очистки сточных вод осуществляются в аппаратах периодического (фильтрах) или непрерывного действия. /25/.
Электродиализ
Электродиализ – процесс сепарации ионов солей, осуществляемый в мембранном аппарате под действием постоянного электрического тока, применяемый для опреснения высокоминерализированных сточных вод.
Электродиализатор разделен чередующимися катионитовыми и анионитовыми мембранами, образующими концентрирующие (рассольные) и обессоливающие (дилюатные) камеры. Под действием постоянного тока катионы, двигаясь к катоду («-»), проникают через катионитовые мембраны, но задерживаются анионитовыми, а анионы, двигаясь в направлении анода («+»), проходят через анионитовые мембраны, но задерживаются катионитовыми. В результате этого из одного ряда камер (например, четных) ионы обоих знаков выводятся в смежный ряд камер.
Мембраны для электродиализатора изготовляют в виде гибких листов прямоугольной формы или рулонов из термопластичного полимерного связующего и порошка ионообменных смол /26/.
Электродиализные аппараты применяются двух типов: прокладочные и лабиринтные. Электродиализаторы прокладочного типа имеют горизонтальную ось электрического поля; их пропускная способность 2-20 м3/ч. Электродиализаторы лабиринтного типа имеют вертикальную ось электрического поля, их пропускная способность 1-25 м3/ч. Оптимальная область применения электродиализаторов – при концентрации солей в сточной воде 3-8 г/л. Во всех конструкциях электродиализаторов в основном применяют электроды, изготовленные из платинированного титана. Для эффективной работы аппаратов большое значение имеет промывка приэлектродных камер, что предохраняет крайние мембраны от разрушения продуктами электролиза. /27/
Технологические схемы электродиализных установок (ЭДУ) состоят из следующих узлов:
1) аппаратов предварительной подготовки исходной воды;
2) собственно электродиализной установки;
3) кислотного хозяйства и системы сжатого воздуха;
4) фильтров, загруженных активированным углем и бактерицидных установок. /27/
Технологические схемы бывают следующих типов.
1. Прямоточные ЭДУ, в которых сточная вода последовательно или параллельно проходит через аппараты установки и солесодержащие воды снижается от исходного до заданного за один проход.
2. Циркуляционные (порционные) ЭДУ, в которых определенный объем частично обессоленной воды из бака дилюата перекачивается через мембранный электродиализный аппарат обратно и бак до тех пор, пока не будет достигнута необходимая степень обессоливания.
3. Циркуляционные ЭДУ непрерывного действия, в которых часть сточной воды непрерывно смешивается с частью не полностью обесссоленной воды (дилюата), проходит через электродиализатор и подается потребителю или в резервуар очищенной воды.
4. ЭДУ с аппаратами, имеющими последовательную гидравлическую систему движения потоков в рабочих камерах. /28/
Каждая из указанных выше технологических схем имеет определенные преимущества и недостатки, и их выбор производится на основании технико–экономических расчетов. Исходными параметрами для расчета являются: конкретные местные условия, пропускная способность ЭДУ, солесодержание и состав обрабатываемых сточных вод. Например. При суточном расходе более 300-500 м3 сточных вод считается рациональным применение технологических схем прямоточного типа. /29/
1.2.4. Биологическая очистка производственных сточных вод
Биологическое окисление – широко применяемый на практике метод очистки производственных сточных вод, позволяющий очистить их от многих органических примесей. Процесс этот, по своей сущности, природный, и его характер одинаков для процессов, протекающих в водоеме, очистном сооружении, склянки для определения БПК, респирометре и т.п. Биологическое окисление осуществляется сообществом микроорганизмов (биоценозом), включающим множество высокоорганизованных организмов – водорослей, грибов и т.д., связанных между собой в единый комплекс сложными взаимоотношениями (метабиоза, симбиоза и антагонизма). Главенствующую роль в этом сообществе принадлежит бактериям, число которых варьируется от 106 до 1014 клеток на 1 г сухой биологической массы (биомассы). Число родов бактерий может достигать 5-10, число видов – нескольких – нескольких десятков и даже сотен.
Такое разнообразие видов бактерий обусловлено наличием в очищаемой воде органических веществ различных классов. Если же в составе сточных вод присутствует лишь один или несколько близких по составу источников органического углерода, т.е. одни или несколько близких гомологов органического соединения, то возможно развитие монокультуры бактерий. /29,40/