Биотопливо - это топливо, которое получают, как правило, из биологического сырья, в качестве которой используют стебли сахарного тростника или семян рапса, кукурузы, сои. Могут также использоваться целлюлоза и различные типы органических отходов.
Различают твердое биотопливо (дрова, солома), жидкое биотопливо (этанол, метанол, биодизель), и газообразное биотопливо (биогаз, водород).
Твердое биотопливо
Дрова - древнейшее топливо. Сейчас для производства дров или биомассы выращивают энергетические леса, состоящие из быстрорастущих растений. Из-за значительного роста цен на нефть в последнее время население многих стран сокращает потребление нефтяных топлив и увеличивает использование дров. Это приводит к истреблению лесов.
Твердые энергоносители биологического происхождения (главным образом навоз, отходы древесина, торф) брикетируют, сушат и сжигают в каминах жилых домов и топках тепловых электростанций, вырабатывая дешевое электричество для бытовых и производственных нужд. Отходы древесины с минимальной степенью подготовки к сжиганию (опилки, кора, шелуха, солома и т.д.) прессуют в топливные брикеты или пеллеты, которые имеют форму цилиндрических или сферических гранул диаметром 8-23 мм и длину 10-30 мм.
Жидкое биотопливо
Биоэтанол - это обычный этанол, получаемый путем переработки растительного сырья и используемый как биотопливо. Этанол (этиловый спирт) - C2H5OH или CH3-CH2-OH, второй представитель гомологического ряда одноатомных спиртов, в просторечии - спирт или алкоголь. Существует 2 основных способа получения этанола - микробиологический (спиртовое брожение) и синтетический (гидратация этилена). Следствием брожения является раствор, содержащий не более 15% этанола, поскольку в более концентрированных растворах дрожжи обычно гибнут. Полученный таким образом этанол нуждается в очистке и концентрирования, обычно путем дистилляции. В промышленных масштабах этиловый спирт получают из сырья, содержащего целлюлозу (древесина, солома), которую предварительно гидролизуют. Смесь, образовавшаяся при этом, подвергают спиртовом брожению.
Этанол по сравнению с бензином является менее «энергонасыщенным» источником энергии. Пробег машин, работающих на Е85 (смесь 85% этанола и 15% бензина; буква «Е» от английского Ethanol), на единицу объема топлива составляет около 75% от пробега стандартных машин. Обычные машины не могут работать на Е85, хотя двигатели внутреннего сгорания работают на Е10. На «настоящем» этаноле могут работать только т. н. «Flex-Fuel» машины. Эти автомобили могут работать на обычном бензине или на произвольной смеси того и другого.
Серьезным недостатком биоэтанола является то, что при сгорании этанола в выхлопных газах двигателей появляются альдегиды (формальдегид и ацетальдегид), которые наносят живым организмам не меньший ущерб, чем ароматические углеводороды.
Биометанол - вид жидкого биотоплива на основе метилового (древесного) спирта, получаемого путем сухой перегонки отходов древесины и конверсией метана из биогаза. Производство биомассы может осуществляться путем культивирования фитопланктона в искусственных водоемах, создаваемых на морском побережье. Вторичные процессы представляют собой метановое брожение биомассы и последующее гидроксилирование метана с получением метанола.
Несмотря на высокое октановое число - более 100, теплотворная способность метанола вдвое меньше, чем у бензина. Это, а также недостаточная летучесть чистого спирта, объясняет необходимость смешивания метанола с бензином. Стандартом является биометанол М85 (буква «М» от англ. Methanol), содержащий 85% метилового спирта и 15% бензина.
Биометанол М85 не получил распространение как вследствие низкого энергосодержание, так и через исключительную коррозионную активность метанола, которая требует применения специальных материалов.
С точки зрения получения энергии данная биосистема имеет существенные экономические преимущества по сравнению с другими способами преобразования солнечной энергии.
Биобутанол-C4H10O - бутиловый спирт. Бесцветная жидкость с характерным запахом. Широко используется в промышленности. Производство бутанола началось в начале XX века. В 50-х годах из-за падения цен на нефть бутанол начали изготовлять из нефтепродуктов.
Бутанол не обладает коррозионными свойствами, может передаваться существующей инфраструктурой. Может, но не обязательно должен, смешиваться с традиционным топливом. Энергоемкость бутанола близка к энергоемкости бензина. Бутанол может использоваться в топливных элементах, а также как сырье для производства водорода.
Сырьем для производства биобутанола могут быть сахарный тростник, свекла, кукуруза, пшеница, а в будущем и целлюлоза.
Диметиловый эфир (ДМЭ) - C2H6O может производиться как из угля, природного газа, так и из биомассы. Большое количество диметилового эфира производится из отходов целлюлозно-бумажного производства. Сжижается при небольшом давлении.
Диметиловый эфир - экологически чистое топливо без содержания серы, содержание оксидов азота в выхлопных газах на 90% меньше, чем в бензине. Применение диметилового эфира не требует специальных фильтров, но необходима переделка систем питания (установка газобалонного оборудования, корректировка смесеобразования) и зажигания двигателя. Без переработки возможно применение на автомобилях с LPG-двигателями при 30% содержании в топливе.
Биодизель - топливо на основе жиров животного, растительного и микробного происхождения, а также продуктов их этерификации.
Для получения биодизельного топлива используются растительные или животные жиры. Сырьем могут быть рапсовое, соевое, пальмовое, кокосовое масло, или любое другое масло-сырец, а также отходы пищевой промышленности. Разрабатываются технологии производства биодизеля из водорослей.
Биотопливо второго поколения - топливо, полученное разными методами пиролиза биомассы, или другие топлива, отличные от метанола, этанола, биодизеля.
Быстрый пиролиз позволяет превратить биомассу в жидкость, которую легче и дешевле транспортировать, хранить и использовать. Из жидкости можно сделать автомобильное топливо или топливо для электростанций.
Газообразное биотопливо
Биогаз - продукт сбраживания органических отходов (биомассы), представляющий смесь метана и углекислого газа. Разложение биомассы происходит под воздействием бактерий класса метаногенов.
Биотопливо третьего поколения
Биотоплива третьего поколения - топливо, полученное из водорослей. Кроме выращивания водорослей в открытых прудах существуют технологии выращивания водорослей в малых биореакторах, расположенных вблизи электростанций. Сбросного тепла ТЭЦ способно покрыть до 77% потребностей в тепле, необходимом для выращивания водорослей. Эта технология не требует жаркого тропического климата.
ВЕТРЯННАЯ ЭНЕРГИЯ
ДОСТОИНСТВА:
- Экологически чистый вид энергии: Создание электроэнергии с поддержкою "ветряков" не сопровождается выбросами CO2 и каких-либо иных газов.
- Эргономика: Ветровые электростанции занимают совсем немного места и просто вписываются в хоть какой ландшафт, а также непревзойденно смешиваются с иными видами хозяйственного применения территорий.
- Возобновляемая энергия: Энергия ветра, в отличие от ископаемого горючего, неистощима.
- Ветровая энергетика - лучшее решение для труднодоступных мест: Для удалённых мест установка ветровых электрогенераторов может быть лучшим и более дешёвым решением.
НЕДОСТАТКИ:
- Непостоянность: Непостоянность содержится в негарантированности получения нужного количества электроэнергии. На неких участках суши силы ветра может оказаться недостаточно для выработки нужного количества электроэнергии.
- Условно низкий выход электроэнергии: Ветровые генераторы веско уступают в выработке электроэнергии дизельным генераторам, что приводит к необходимости установки сходу нескольких турбин. Не считая того, ветровые турбины неэффективны при пиковых отягощениях.
- Немалая стоимость: Стоимость установки, производящей 1 гига-ватт электроэнергии, около 1 миллиона баксов.
- Опасность для живой природы: Вертящиеся лопасти турбины представляют потенциальную опасность для неких видов живых организмов. По статистике, лопасти каждой установленной турбины являются предпосылкой погибели не менее 4 особей птиц в год.
- Шумовое загрязнение: Шум, производимый "ветряками", может причинять беспокойство, как животным, так и людям, живущим вблизи.
ФАКТЫ:
- В США 32% всех мощностей ветрогенераторов было запущено в 2008 году.
- "Ветряки" вырабатывают 1,5% всей употребляемой электроэнергии.
- Ветровые электростанции побережий могут прирастить мировую электроэнергию в 40 разов.
- Ожидается, что к 2010 году мощность всех ветровых электростанций в мире приблизится к 200 000 мега-ваттам (сегодня суммарная мощность всех "ветряков" около 121 188 мега-ватт).
1. Какой уровень шума вызывают ВЭС?
Ветряные энергетические установки вызывают две разновидности шума:
* Механический шум, который является результатом работы механических и электрических компонентов (для современных ветроустановок практически отсутствует, но является значительным в ветроустановках старых моделей);
* Аэродинамический шум, вызванный взаимодействием ветрового потока с лопастями установки (усиливается при прохождении лопасти мимо башни ветроустановки.
Сегодня при определении уровня шума ветроустановок пользуются только расчетными методами. Метод непосредственных измерений уровня шума не дает информации о громкости ветроустановки, поскольку нет эффективных методов отделения шума ветроустановки от шума ветра.
В непосредственной близости от ветрогенератора у оси ветроколеса уровень громкости достаточно большой ветроустановки может превышать 100 дБ.
Примером подобных конструктивных просчетов является ветрогенератор Гровиан. Из-за высокого уровня шума установка проработала около 100 часов и была демонтирована.
Законы, принятые в Великобритании, Германии, Нидерландах и Дании, ограничивают уровень шума работающей ветряной энергетической установки до 45 дБ в дневное время и до 35 дБ ночью. Минимальное расстояние от установки до жилых домов - 300 м.