Верхняя граница жизни в атмосфере определяется нарастанием с высотой ультрафиолетовой радиации. На высоте 25 - 27 км большую часть ультрафиолетового излучения Солнца поглощает находящийся здесь тонкий слой озона - озоновый экран. Все живое, поднимающееся выше защитного слоя озона, погибает. Атмосфера же над поверхностью Земли насыщена многообразными живыми организмами. Споры бактерий и грибов обнаруживают до высоты 20 - 22 км, но основная часть аэропланктона сосредоточена в слое до 1-1,5 км.
Хотя процессы жизнедеятельности современных организмов сосредоточены только в экосфере, влияние живого вещества (современного или существовавшего в прошлом) ощущается далеко за ее пределами. Именно поэтому биосфера Вернадского (как область существования всех былых экосфер) простирается далеко за пределы современной экосферы, охватывая по вертикали слой толщиной 40 - 50 км.
Приблизительная масса биосферы составляет 0,05% массы Земли, а ее объем 0,4% объема планеты.
Структура биосферы представляет собой сложную многокомпонентную систему - совокупность газообразной, жидкой, твердой и биологической организаций. Она характеризуется строгой организованностью, биологическим равновесием численности и взаимной адаптированностью составляющих ее организмов.
Вернадский подчеркивал, что биосферу нужно рассматривать как целостную геологическую оболочку Земли, весьма сложную саморегулирующуюся систему, состоящую из живого вещества и неживой материи.
Всю совокупность организмов на планете Вернадский назвал живым веществом.
Косное вещество, по Вернадскому, это совокупность тех веществ в биосфере, в образовании которых живые организмы не участвуют - т.е. горные породы магматического, неорганического происхождения, видоизмененные живыми организмами вещества космического происхождения, космическая пыль, метеориты.
Биогенное вещество создается и перерабатывается жизнью, совокупностями живых организмов. Это источник чрезвычайно мощной потенциальной энергии (каменный уголь, гумус почв, нефть, битумы, торф и т.п.). После образования биогенного вещества живые организмы в нем малодеятельны.
Особой категорией является биокосное вещество. Вернадский определял, что оно "создается в биосфере одновременно живыми организмами и косными процессами, представляя системы динамического равновесия тех и других". Организмы в биокосном веществе играют ведущую роль. Биокосное вещество планеты - это почвы, кора выветривания, все природные воды, свойства которых зависят от деятельности на Земле живого вещества.
Биосфера, таким образом, это та область Земли, которая охвачена влиянием живого вещества. С современных позиций биосферу рассматривают как наиболее крупную экосистему планеты, поддерживающую глобальный круговорот веществ.
5.Глобальный круговорот углерода и азота.
Круговорот углерода:
В биологическом круговороте углерода участвуют только органические соединения и диоксид углерода; фотосинтез и дыхание полностью комплементарны. Весь ассимилированный в процессе фотосинтеза углерод включается в углеводы, а в процессе дыхания углерод, содержащийся в органических соединениях, превращается в диоксид углерода.
В круговороте СО2атмосферный фонд очень невелик (0,035% атм.), в сравнении с запасами углерода в океанах, в ископаемом топливе и других резервуарах земной коры. Полагают, что до наступления индустриальной эры потоки углерода между атмосферой, материками и океанами были сбалансированы.
В основе этого баланса лежит регулирующая деятельность зеленых растений и поглощающая способность карбонатной системы моря. Низкое содержание СО2, также как высокие концентрации О2служат лимитирующими факторами для фотосинтеза: для большинства растений характерно увеличение интенсивности фотосинтеза, если в эксперименте увеличивается содержание CО2 или понижается содержание О2. Таким образом, зеленые растения оказываются весьма чувствительным регулятором содержания этих газов.
Фотосинтезирующий "зеленый пояс" Земли и карбонатная система моря поддерживают постоянный уровень содержания СО2в атмосфере. Но в последнем столетии стремительно возрастающее потребление горючих ископаемых вместе с уменьшением поглотительной способности "зеленого пояса" начинает превосходить возможности природного контроля, так что содержание СО2 в атмосфере, сейчас постепенно возрастает. Если концентрация вдвое превысит доиндустриальный уровень, что может случиться к середине будущего века, вероятно потепление климата Земли: температура в среднем повысится на 1,5 - 4,5 °С, и это наряду с подъемом уровня моря (в результате таяния полярных шапок) и изменением распределения осадков может погубить сельское хозяйство.
Основным источником поступления "парникового газа" СО2считается сжигание горючих ископаемых, однако свой вклад вносят также развитие сельского хозяйства и сведение лесов. Может показаться удивительным, что сельское хозяйство в конечном счете приводит к потере СО2из почвы (то есть вносит в атмосферу больше, чем забирает оттуда), но дело в том, что фиксация СО2сельскохозяйственными культурами, многие из которых активны лишь часть года, не компенсирует количества СО2, высвобождающееся из почвы, особенно в результате частой вспашки. Леса - важные накопители углерода, так как в биомассе лесов содержится в 1,5 раза, а в лесном гумусе - в 4 раза больше углерода, чем в атмосфере. Сведение леса, разумеется, может высвободить углерод, накопленный в древесине, особенно если она немедленно сжигается. Уничтожение леса, особенно при последующем использовании этих земель для сельского хозяйства или строительства городов, приводит к окислению гумуса.
Круговорот азота - Воздух, на 78,08% состоящий из азота, представляет собой крупнейший "резервуар" и одновременно "предохранительный клапан" системы. Азот постоянно поступает в атмосферу благодаря деятельности денитрифицирующих бактерий и постоянно возвращается в круговорот в результате деятельности азотфиксирующих бактерий или водорослей (биологическая фиксация азота), а также действию электрических разрядов - молний и других физических процессов, в которых происходит фиксация азота.
Путь прохождения азота через экосистему отличается от пути углерода и кислорода в нескольких важных аспектах. Во-первых, большинство организмов не могут ассимилировать азот из огромного его фонда (3,85*1021 г N2), имеющегося в атмосфере. Во-вторых, азот не принимает непосредственного участия в высвобождении химической энергии при дыхании: главная его роль сводится к тому, что он входит в состав белков и нуклеиновых кислот, которые создают структуру биологических систем и регулируют их функционирование. В-третьих, биологическое разложение азотсодержащих органических соединений до неорганических форм слагается из нескольких стадий, и некоторые из этих стадий могут осуществляться только специализированными бактериями. В-четвертых, большая часть биохимических превращений, участвующих в разложении азотсодержащих соединений, происходит в почве, где доступность азота растениям облегчается растворимостью его неорганических соединений.
Наиболее важные процессы в круговороте азота - это распад органических азотсодержащих соединений в результате аммонификации и нитрификации, восстановление нитратов и нитритов до молекулярного азота (N2) в результате денитрификации и его высвобождение в атмосферу, а также процесс биологической ассимиляции атмосферного азота путем его фиксации.
В органических соединениях азот обычно представлен амино - или какой-либо родственной группой, входящей в состав той или иной органической молекулы. У животных выведение из организма избыточного азота происходит путем отщепления аминов от органических соединений и выделения их в сравнительно неизменной форме, главным образом, в виде аммиака (NН3) или мочевины СО(NH2)2. Почвенные микроорганизмы легко превращают мочевину в аммиак путем гидролиза:
Некоторые специализированные, и повсеместно встречающиеся бактерии могут высвобождать химическую энергию, содержащуюся в аминогруппе, в результате ряда реакций нитрификации, для которых необходим кислород. Nitrosomonas превращает ион аммония в нитрит; Nitrobacter завершает процесс нитрификации, окисляя нитрит до нитрата. В форме нитратов азот усваивается зелеными растениями.
Денитрификация, в процессе которой нитраты превращаются в азот, происходит в несколько этапов:
NO3-® NО2-® N2O ® N2
причем на каждом из этих этапов выделяется кислород. (Бактерия Pseudomonas добывает с помощью этого процесса необходимый для дыхания кислород при отсутствии в почве свободного кислорода).