Человеческая деятельность
Результаты последних исследований подкрепляют теорию о том, что в глобальном потеплении виновата человеческая деятельность. Исследование с участием ученых из Шотландии, Канады и Австралии показало, что вероятность естественных, а не антропогенных причин изменения климата на планете составляет не более 5 %.
Согласно тому же исследованию, с 1980 года средняя температура воздуха на планете поднялась на 0.5 градуса по Цельсию, и Земля продолжает нагреваться примерно на 0.16 градуса за десятилетие.
Другие теории
Изменение солнечной активности
Были предложены разнообразные гипотезы, объясняющие изменения температуры Земли соответствующими изменениями солнечной активности.
В третьем отчёте МГЭИК утверждается, что солнечная и вулканическая активность может объяснить половину температурных изменений до 1950 года, но их общий эффект после этого был примерно равен нулю. В частности, влияние парникового эффекта с 1750 года, по оценке МГЭИК, в 8 раз выше влияния изменения солнечной активности.
Более поздние работы уточняли оценки влияния солнечной активности на потепление после 1950. Тем не менее, выводы остались примерно теми же: «Лучшие оценки вклада солнечной активности в потепление лежат в пределах от 16 % до 36 % вклада парникового эффекта» («Недооценивают ли модели вклад солнечной активности в последние изменения климата», Питер А. Скотт и др., «Journal of Climate», 15 декабря 2003).
Однако, существует ряд работ, предполагающих существование механизмов, усиливающих эффект солнечной активности, которые не учитываются в современных моделях, или что важность солнечной активности в сравнении с другими факторами недооценивается. Такие утверждения оспариваются, но являются активным направлением исследований. Выводы, которые будут получены в результате этой дискуссии, могут сыграть ключевую роль в вопросе о том, в какой степени человечество ответственно за изменение климата, и в какой — естественные факторы.
Другие гипотезы
Есть множество иных объяснений возможного текущего повышения средней температуры земной поверхности, без привлечения роли промышленных парниковых газов, в том числе:
Наблюдаемое потепление находится в пределах естественной изменчивости климата и не нуждается в отдельном объяснении
Потепление является результатом выхода из холодного Малого ледникового периода
Потепление наблюдается слишком непродолжительное время, поэтому нельзя достаточно уверенно сказать, происходит ли оно вообще
Следует учитывать, что кроме влияния антропогенных факторов, климат на нашей планете безусловно зависит от многих процессов, происходящих в системе Земля — Солнце — Космос. Кроме случайных, но многократных за историю Земли и катастрофических по своим последствиям столкновений с крупными астероидами и кометами, земная атмосфера испытывает и периодически повторяющиеся воздействия планетарного и космического происхождения. Можно выделить четыре группы таких циклов.
«Сверхдлинные» — по 150−300 миллионов лет — характеризуются самыми значительными изменениями климата на Земле. Они, вероятнее всего, связаны с периодом обращения Солнца вокруг центра масс нашей Галактики и прохождениями Солнечной системы через области Млечного пути с различной плотностью газо-пылевого вещества, которое в зависимости от своего состава, может как экранировать излучение Солнца, так и усиливать на нём интенсивность термоядерных реакций.
«Длинные» циклы, связанные с тектоникой литосферных плит и интенсивностью вулканической деятельности. Они надёжно установлены в палеогеологической летописи, но нерегулярны по периоду и длятся от нескольких до десятков миллионов лет.
«Короткие» периоды, так наз. «Циклы Миланковича», продолжительностью 93000, 41000 и 25750 лет, вызванные периодическими колебаниями перигелия земной орбиты и ориентации оси вращения Земли, определяемой явлениями нутации и прецессии. Из этих двух астрономических явлений на общую инсоляцию поверхности в первую очередь влияет периодическое изменение величины угла наклона оси вращения Земли к плоскости её орбиты, то есть нутация.
И, наконец, последняя категория, условно называется «ультракороткими» периодами. Они связаны с ритмами солнечной активности, среди которых предполагается наличие периодов продолжительностью 6000, 2300, 210 и 87 лет, кроме безусловно существующих 22-х и 11-ти летних циклов активности Солнца.
Суперпозиция различных по своей природе и по продолжительности периодов изменения интенсивности солнечной радиации, достигающей нашей планеты, в сочетании с тепловой инерцией океанов, движением материков, вулканической активностью, а возможно, и влиянием обратных реакций всей земной биосферы, как целого, — и определяет среднюю температуру земной поверхности и распределение климатических зон в различные геологические эпохи. Этот сложный комплекс множества знакопеременных геофизических и космических факторов воздействия на земной климат, может, по мнению некоторых, обуславливать и наблюдаемое в наше время потепление. Человек в настоящее время не в силах влиять на процессы таких масштабов.
Почему глобальное потепление иногда приводит к похолоданию
Глобальное потепление вовсе не означает потепление везде и в любое время. В частности, в какой-либо местности может увеличиться средняя температура лета и уменьшиться средняя температура зимы, то есть климат станет более континентальным. Глобальное потепление можно выявить, только усреднив температуру по всем географическим локациям и всем сезонам.
Согласно одной из гипотез, глобальное потепление приведёт к остановке или серьёзному ослаблению Гольфстрима. Это вызовет существенное падение средней температуры в Европе (при этом температура в других регионах повысится, но не обязательно во всех), так как Гольфстрим прогревает континент за счёт переноса тёплой воды из тропиков.
Согласно гипотезе климатологов М. Юинга и У. Донна, в криоэре существует колебательный процесс, в котором оледенение (ледниковый период) порождается потеплением климата, а дегляциация (выход из ледникового периода) — похолоданием. Это связанно с тем, что в Кайнозое, являющемся криоэрой, при оттаивании ледяных полярных шапок увеличивается количество осадков в высоких широтах, что зимой приводит к локальному повышению альбедо. В дальнейшем происходит снижение температуры глубинных районов континентов северного полушария с последующим образованием ледников. При замерзании ледяных полярных шапок ледники в глубинных районах континентов северного полушария, не получая достаточно подпитки в виде осадков, начинают оттаивать.
Реконструкция последствий
Большое значение в реконструкции возможных последствий современных колебаний климата имеет восстановление природных условий предшествующего межледниковья — Микулинского, — имевшего место после окончания Рисского (Днепровского) оледенения. В максимально теплые эпохи Микулинского межледниковья температура была на несколько градусов выше современной (установлено по данным изотопных анализов остатков микроорганизмов и газовых включений в покровных ледниках Антарктиды и Гренландии), границы природных зон были смещены к северу на несколько сотен километров по сравнению с современными. При реконструкции более тёплых периодов современного межледниковья — так называемого Климатического оптимума голоцена, имевшего место от 6 до 5 тыс. лет назад, установлено следующее. Среднегодовая температура была на 2-3 градуса выше современной, уровень Мирового океана был на 5 метров выше современного, и границы природных зон также были расположены севернее современных (их общий план географического распространения примерно совпадал с Микулинским межледниковьем). Из имеющихся данных по палеогеографии логично предположить, что при дальнейшем росте температур географическая оболочка будет трансформироваться аналогичным образом. Это противоречит гипотезам о похолодании севера Европы и Северной Америки и смещении природных зон в этих регионах на юг от их современного положения.
Взаимное влияние изменения климата и экосистем пока плохо изучено. Остаётся неясным, усиливаются или ослабляются эффекты глобального потепления в результате действия природных механизмов. Например, увеличение концентрации углерода приводит к интенсификации фотосинтеза растений, что препятствует росту концентрации. С другой стороны, рост площади засушливых районов снижает переработку углекислого газа.
Цифры и факты
За последние полвека температура на юго-западе Антарктики, на Антарктическом полуострове, возросла на 2,5 °C. В 2002 году от шельфового ледника Ларсена площадью 3250 км² и толщиной свыше 200 метров, расположенного на Антарктическом полуострове, откололся айсберг площадью свыше 2500 км². Весь процесс разрушения занял всего 35 дней. До этого ледник оставался стабильным в течение 10 тысяч лет, с конца последнего ледникового периода. Таяние шельфового ледника привело к выбросу большого количества айсбергов (свыше тысячи) в море Уэдделла.
Тем не менее, площадь оледенения Антарктики растёт.
Отмечено ускорение процесса деградации вечной мерзлоты.
С начала 1970-х годов температура многолетнемёрзлых грунтов в Западной Сибири повысилась на 1,0 °C, в центральной Якутии — на 1—1,5 °C. На севере Аляски с середины 1980-х годов температура верхнего слоя мёрзлых пород увеличилась на 3 °C.
Другие аспекты изменения климата
Глобальное изменение климата не ограничивается потеплением. Происходит также изменение солевой плотности океанов, повышение влажности воздуха, изменение характера дождевых осадков и таянии арктического льда со скоростью примерно 600 тыс. кв. км за десятилетие. Атмосфера становится более влажной, выпадает больше дождей в высоких и низких широтах, и меньше — в тропических и субтропических регионах