Наряду с электронным β-распадом обнаружен так называемый позитронный β+-распад, при котором из ядра вылетают позитрон
Закон радиоактивного распада
В любом образце радиоактивного вещества содержится огромное число радиоактивных атомов. Так как радиоактивный распад имеет случайный характер и не зависит от внешних условий, то закон убывания количества N (t) нераспавшихся к данному моменту времени t ядер может служить важной статистической характеристикой процесса радиоактивного распада.
Пусть за малый промежуток времени Δt количество нераспавшихся ядер N (t) изменилось на ΔN < 0. Так как вероятность распада каждого ядра неизменна во времени, что число распадов будет пропорционально количеству ядер N (t) и промежутку времени Δt: ΔN = –λN (t) Δt.
Коэффициент пропорциональности λ – это вероятность распада ядра за время Δt = 1 с. Эта формула означает, что скорость
Подобная зависимость возникает во многих физических задачах (например, при разряде конденсатора через резистор). Решение этого уравнения приводит к экспоненциальному закону:
N (t) = N0 e–λt,
где N0 – начальное число радиоактивных ядер при t = 0. За время τ = 1 / λ количество нераспавшихся ядер уменьшится в e ≈ 2,7 раза. Величину τ называют средним временем жизни радиоактивного ядра.
Для практического использования закон радиоактивного распада удобно записать в другом виде, используя в качестве основания число 2, а не e:
N (t) = N0 · 2–t/T.
Величина T называется периодом полураспада. За время T распадается половина первоначального количества радиоактивных ядер. Величины T и τ связаны соотношением
Рис.4 иллюстрирует закон радиоактивного распада.
Рисунок 4 - Закон радиоактивного распада
Период полураспада – основная величина, характеризующая скорость процесса. Чем меньше период полураспада, тем интенсивнее протекает распад. Так, для урана T ≈ 4,5 млрд лет, а для радия T ≈ 1600 лет. Поэтому активность радия значительно выше, чем урана. Существуют радиоактивные элементы с периодом полураспада в доли секунды.
При α- и β-радиоактивном распаде дочернее ядро также может оказаться нестабильным. Поэтому возможны серии последовательных радиоактивных распадов, которые заканчиваются образованием стабильных ядер. В природе существует несколько таких серий. Наиболее длинной является серия
Рисунок 5. - Схема распада радиоактивной серии
В природе существуют еще несколько радиоактивных серий, аналогичных серии
Интересным применением радиоактивности является метод датирования археологических и геологических находок по концентрации радиоактивных изотопов. Наиболее часто используется радиоуглеродный метод датирования. Нестабильный изотоп углерода
Радиоактивное излучение всех видов (альфа, бета, гамма, нейтроны), а также электромагнитная радиация (рентгеновское излучение) оказывают очень сильное биологическое воздействие на живые организмы, которое заключается в процессах возбуждения и ионизации атомов и молекул, входящих в состав живых клеток. Под действием ионизирующей радиации разрушаются сложные молекулы и клеточные структуры, что приводит к лучевому поражению организма. Поэтому при работе с любым источником радиации необходимо принимать все меры радиационной защиты людей, которые могут попасть в зону действия излучения.
Однако человек может подвергаться действию ионизирующей радиации и в бытовых условиях. Серьезную опасность для здоровья человека может представлять инертный, бесцветный, радиоактивный газ радон
Список использованной литературы
http://ens.tpu.ru/POSOBIE_FIS_KUSN
http://shkola.lv/index.php?mode=lesson&lsnid=170
Грачев Н.Н. Кафедра РТУиС, МИЭМ «Радиационная среда и ее основные характеристики»