Вся огромная масса растений использует всего 0,5% поступающей на Землю солнечной энергии. В любом случае поступающего солнечного излучения заведомо достаточно для удовлетворения любых немыслимых потребностей человечества как части биосферы. В связи с тем, что большая часть поступающей на Землю солнечной энергии при любом использовании, в конечном счете, превращается в тепло, то увеличение использования солнечной энергии не может сколько-нибудь ощутимо повлиять на динамику биосферных процессов.
4. Энергетический баланс
Энергетический или тепловой баланс Земли это соотношение прихода и расхода энергии (лучистой и тепловой) на земной поверхности, в атмосфере и в системе Земля — атмосфера. Основным источником энергии для подавляющего большинства физических, химических и биологических процессов в атмосфере, гидросфере и в верхних слоях литосферы является солнечная радиация, поэтому распределение и соотношение составляющих теплового баланса характеризуют её преобразования в этих оболочках.
Тепловой баланс представляет собой частные формулировки закона сохранения энергии и составляются для участка поверхности Земли; для вертикального столба, проходящего через атмосферу; для такого же столба, проходящего через атмосферу и верхние слои литосферы или гидросферу (система Земля — атмосфера).
Уравнение теплового баланса земной поверхности: R + P + F0 + LE = 0 представляет собой алгебраическую сумму потоков энергии между элементом земной поверхности и окружающим пространством. В число этих потоков входит радиационный баланс R — разность между поглощённой коротковолновой солнечной радиацией и длинноволновым эффективным излучением с земной поверхности. Положительная или отрицательная величина радиационного баланса компенсируется несколькими потоками тепла. Так как температура земной поверхности обычно не равна температуре воздуха, то между подстилающей поверхностью и атмосферой возникает поток тепла Р. Аналогичный поток тепла F0 наблюдается между земной поверхностью и более глубокими слоями литосферы или гидросферы. При этом поток тепла в почве определяется молекулярной теплопроводностью, тогда как в водоёмах теплообмен, как правило, имеет в большей или меньшей степени турбулентный характер. Поток тепла F0 между поверхностью водоёма и его более глубокими слоями численно равен изменению теплосодержания водоёма за данный интервал времени и переносу тепла течениями в водоёме. Существенное значение в тепловом балансе земной поверхности обычно имеет расход тепла на испарение LE, который определяется как произведение массы испарившейся воды Е на теплоту испарения L. Величина LE зависит от увлажнения земной поверхности, её температуры, влажности воздуха и интенсивности турбулентного теплообмена в приземном слое воздуха, которая определяет скорость переноса водяного пара от земной поверхности в атмосферу.
Уравнение баланса атмосферы имеет вид: Ra + Lr + P + Fa = DW.
Тепловой баланс атмосферы слагается из её радиационного баланса Ra; прихода или расхода тепла Lr при фазовых преобразованиях воды в атмосфере (г — сумма осадков); прихода или расхода тепла Р, обусловленного турбулентным теплообменом атмосферы с земной поверхностью; прихода или расхода тепла Fa, вызванного теплообменом через вертикальные стенки столба, который связан с упорядоченными движениями атмосферы и макротурбулентностью. Кроме того, в уравнение баланса атмосферы входит член DW, равный величине изменения теплосодержания внутри столба.
Уравнение баланса системы Земля — атмосфера соответствует алгебраической сумме членов уравнений теплового баланса земной поверхности и атмосферы. Составляющие баланса земной поверхности и атмосферы для различных районов земного шара определяются путём метеорологических наблюдений (на актинометрических станциях, на специальных станциях, на метеорологических спутниках Земли) или путём климатологических расчётов.
На единицу поверхности внешней границы атмосферы поступает поток солнечной радиации, равный в среднем около 250 ккал/см2 в год, из которых около
5. Распределение составляющих энергетического баланса
Изучение энергетического баланса земного шара было начато в XIX в., когда были изобретены актинометрические приборы и сделаны расчеты количества солнечной радиации, приходящей на верхнюю границу атмосферы, в зависимости от широты и времени года. В 10—30-х годах нашего столетия В. Шмидт, А. Онгстрем, Ф. Альбрехт и С. И. Савинов определили составляющие энергетического баланса земной поверхности для отдельных районов земного шара.
В работах автора и его сотрудников был построен цикл мировых карт составляющих энергетического баланса земной поверхности для каждого месяца и средних годовых условий; эти карты были опубликованы в 1955 г. в «Атласе теплового баланса». В результате дальнейших исследований они были уточнены и дополнены и вместе с несколькими картами составляющих энергетического баланса системы Земля—атмосфера опубликованы в 1963 г. в «Атласе теплового баланса земного шара».
За время, прошедшее после издания второго атласа теплового баланса, был накоплен значительный материал актинометрических наблюдений на континентах, выполненных в ряде районов, где раньше актинометрических станций не было. Особенное значение имеет получение в эти годы обширного материала актинометрических наблюдений на океанах, что позволило выяснить особенности радиационного режима водоемов. Развитие исследований турбулентной диффузии позволило уточнить ранее применявшиеся методы расчета затраты тепла на испарение и турбулентного теплообмена земной поверхности с атмосферой для океанов.
Накопление материалов наблюдений и развитие расчетных методов определения составляющих энергетического баланса сделало возможным построение новых мировых карт составляющих энергетического баланса, уточненных по сравнению с ранее опубликованными картами (Будыко и др., 1978).
При построении этих карт уравнение энергетического баланса земной поверхности использовалось в приведенной форме:
R = LE + P + A
где R — радиационный баланс земной поверхности, LE — затрата тепла на испарение, или приход тепла от конденсации на земной поверхности (L — удельная теплота парообразования, Е — скорость испарения или конденсации), Р — турбулентный поток тепла между земной поверхностью и атмосферой, А — поток тепла между земной поверхностью и нижележащими слоями водоемов или почвы.
Средняя годовая суммарная радиация на земном шаре изменяется от значений, меньших 80 Вт/м2, до значений, больших 280 Вт/м2. Наибольшие значения суммарной радиации, как на суше, так и на океанах соответствуют поясам высокого давления северного и южного полушарий. По направлению к полюсам суммарная радиация уменьшается. Некоторое уменьшение рассматриваемых значений характерно также для экваториальных широт, что связано с большой повторяемостью пасмурного состояния неба в течение всего года.
Распределение изолиний суммарной солнечной радиации носит в основном зональный характер, который существенно нарушается неравномерным распределением облачности. Нарушения зональности имеют место в средних широтах обоих полушарий, где интенсивно развита циклоническая деятельность (западное побережье Канады, север Европы, юго-западное побережье Южной Америки и др.), в восточных районах тропических зон океанов, под влиянием пассатных инверсий и холодных морских течений, в областях действия муссонной циркуляции (Индостан, восточное побережье Азии, северо-запад Индийского океана).