Смекни!
smekni.com

Солнечная радиация. Радиационный баланс. Географическое распределение составляющих. Энергетическ (стр. 3 из 4)

При рассмотрении данных о распределении суммарной радиа­ции для зимних месяцев следует отметить быстрое уменьшение ее в направлении к полюсам соответствующих полушарий, что свя­зано со снижением полуденной высоты Солнца и сокращением продолжительности дня. Вместе с. тем для зимнего периода харак­терны значительные межширотные изменения суммарной радиа­ции': от значений около 200—220 Вт/м2 в низких широтах до зна­чений, равных нулю в полярных широтах, куда в этот период сум­марная радиация не поступает.

Наибольшие месячные значения радиации в низких широтах соответствуют областям действия экваториальных муссонов, где в это время года облачность мала.

Отличительными чертами летнего распределения суммарной радиации является установление высоких ее значений на всем полушарии при малой их географической изменчивости. Макси­мальное количество солнечного тепла получают тропические и суб­тропические пустыни — свыше 300 Вт/м2. Большое количество сол­нечной энергии летом поступает также в полярные районы, где влияние небольших высот Солнца компенсируется значительной продолжительностью дня. Самые большие значения солнечной ра­диации в летние месяцы отмечаются в центральных областях Ан­тарктиды. Так, в январе средние месячные значения изменяются от 250—300 Вт/м2 на побережье до 450 Вт/м2 внутри материка, что заметно превышает значения для областей тропических пу­стынь (Маршунова, 1980).

Средние годовые значения радиационного ба­ланса поверхности суши земного шара изменяются от величин, меньших —7 Вт/м2 в Антарктиде и близких к нулю в централь­ных районах Арктики, до 120—130 Вт/м2 в тропических широтах.

Влияние астрономических факторов, обусловливает зональный характер распределения средних годовых и месячных значений радиационного баланса на равнинных территориях, расположен­ных в высоких и средних широтах северного полушария. Широт­ное распределение нарушается в областях, где циркуляционные факторы существенно изменяют условия облачности.

Из данных о распределении радиационного баланса в отдель­ные месяцы следует, что наименьшие средние месячные значения радиационного баланса, отмечаются в высоких полярных широтах; от —15 до —30 Вт/м2 зимой и около 65 Вт/м2 летом. В средних широтах северного полушария наблюдаются средние месячные значения радиационного баланса от —15 до —30 Вт/м2 в январе и от110 до 145 Вт/м2 в июле. В тропических внеэкваториальных широтах и в период зимнего солнцестояния значения радиационного баланса составляют 55—65 Вт/м2, а в летние месяцы макси­мальные значения достигают 145—160 Вт/м2, уменьшаясь до 85— 95 Вт/м2 в областях пустынь и экваториальных муссонов.

Распределение значений радиационного баланса на поверх­ности океанов, аналогично распределе­нию суммарной радиации. Максимальное среднее годовое значение радиационного баланса на океанах приближается к 200 Вт/м2. Наименьшие средние годовые значения для свободной ото льдов поверхности океанов отмечаются у границы плавучих льдов и составляют около 20—40 Вт/м2. Следует указать, что средние годовые значения радиационного баланса на всей безледной поверхности океанов положительны.

В зимние месяцы радиационный баланс океанов изменяется от 140—160 Вт/м2 в экваториальных широтах до небольших по аб­солютной величине отрицательных значений (около —30 Вт/м2) в средних широтах. При этом радиационный баланс становится отрицательным в обоих полушариях выше широт 45°.

В летние месяцы средние значения радиационного баланса океанов достигают максимальных величин: более 200 Вт/м2 в тро­пических широтах и 130—-140 Вт/м2 в высоких. В эти месяцы рас­пределение радиационного баланса в отличие от зимы заметно отклоняется от зонального, причем области повышенных и пони­женных значений соответствуют областям повышенной и понижен­ной облачности.

Испарение

Средние месячные значения затраты тепла на испарение (и турбулентного теплообмена с атмосферой) на океанах рассчитаны по материалам многолетних судовых наблюдений на акваториях Атлантического, Индийского и Тихого океанов.

Рассматривая особенности распределения средней затраты тепла на испарение на суше за год, можно отметить, что диапазон изменения ее значений составляет около 110 Вт/м2. В районах достаточного увлажнения средняя годовая затрата тепла на испа­рение возрастает вместе с увеличением радиационного баланса от высоких широт к экватору, изменяясь от значений, меньших 10 Вт/м2 на северных побережьях континентов, до значений более 80 Вт/м2 во влажных экваториальных лесах Южной Америки, Африки и Малайского архипелага. В районах недостаточного увлажнения величина затраты тепла на испарение определяется засушливостью климата, уменьшаясь с увеличением засушливости. Наименьшие значения средней годовой затраты тепла на испаре­ние отмечаются в тропических пустынях, где они составляют всего несколько Вт/м2.

Годовой ход затраты тепла на испарение также определяется ресурсами тепловой энергии и воды. Во внетропических широтах с условиями достаточного увлажнения наибольшие значения затраты тепла на испарение в соответствии с годовым ходом радиа­ционного баланса имеют место летом, достигая 80—100 Вт/м2. Зимой затрата тепла на испарение мала. В районах недостаточ­ного увлажнения максимум затраты тепла на испарение также обычно наблюдается во время теплого периода, однако время достижения максимума существенно зависит от режима увлажнения.

В тропических широтах с влажным климатом затрата тепла на испарение велика в течение всего года и составляет около 80 Вт/м2. В районах с сезонами пониженных осадков отмечается некоторое уменьшение затраты тепла на испарение, однако амп­литуда ее годового хода сравнительно невелика. В областях с хо­рошо выраженным сухим периодом наибольшие значения затраты тепла на испарение отмечаются в конце влажного периода, наи­меньшие — в конце сухого.

В целом для суши земного шара (включая Антарктиду) сред­няя за год затрата тепла на испарение составляет 38 Вт/м2.

Распределение средних годовых значений затраты тепла на ис­парение на океанах в общем сходно с распределением радиацион­ного баланса. Изменение средней затраты тепла на испарение довольно велико: от значений, больших 160 Вт/м2 в тропических широтах, до значений около 40 Вт/м2 у границы льдов. В экваториальных широтах средняя затрата тепла на испарение несколько понижена по сравнению с более высокими широтами (меньше 130 Вт/м2), что является следствием увеличения облачности и влажности.

Помимо радиационного тепла, расходуемого на испарение с океанов, в ряде районов на испарение затрачивается также тепло, переносимое течениями. Поэтому зональный характер рас­пределения затраты тепла на испарение нарушается заметными отклонениями в районах действия теплых и холодных течений.

Средние годовые величины затраты тепла на испарение с оке­анов зависят в основном от величин для осенне-зимнего периода. Распределение затраты тепла на испарение в зимние месяцы ана­логично годовому распределению. В это время усиливается влия­ние теплых течений, в связи с чем отчетливо проявляются особен­ности отдельных океанов: затрата тепла на испарение с поверх­ности Северной Атлантики в средних широтах вдвое больше, чем в тех же широтах Тихого океана. Самые низкие значения затраты тепла на испарение отмечаются в средних широтах южного полушария в Атлантическом и Индийском океанах. В эти районы со сравнительно невысокими температурами воды из низких широт поступают более теплые воздушные массы, что уменьшает затраты тепла на испарение.

При переходе к лету влияние теплых течений на величину за­траты тепла на испарение ослабевает из-за уменьшения энерге­тических ресурсов течений. Поскольку в летние месяцы происходит снижение средних скоростей ветра и ослабление контраста темпе­ратуры вода—воздух, расход тепла на испарение заметно падает. Вместе с этим уменьшается различие в значениях затраты тепла на испарение с поверхности отдельных океанов.

Наибольшие средние годовые значения турбулентного по­тока тепла между поверхностью суши и атмосферой отмечаются в тропических пустынях, где они достигают 70—80 Вт/м2. С уве­личением увлажнения климата турбулентный поток уменьшается. Так, в районах влажных тропических лесов средний годовой тур­булентный поток составляет 15—40 Вт/м2. С продвижением в бо­лее высокие широты турбулентный поток уменьшается вместе с понижением радиационного баланса. На северных побережьях континентов северного полушария турбулентный поток составляет менее 10 Вт/м2. Такие же значения отмечаются в некоторых рай­онах достаточного увлажнения средних широт.

В годовом ходе наблюдается таже закономерность – возраста­ние турбулентного потока с увеличением радиационного баланса. В силу этого во внетропических широтах наибольшие в годовом ходе значения турбулентного потока отмечаются летом, наименьшие—зимой. При этом для территории, расположенной выше 40° северной и южной широт, характерна смена направления турбу­лентного потока в течение года. В зимнее время земная поверх­ность получает тепло из атмосферы путем турбулентного тепло­обмена, однако значения теплоотдачи от атмосферы невелики, даже на Крайнем Севере они составляют менее 10 Вт/м2.