Смекни!
smekni.com

Биологическая очистка хозбытовых сточных вод на предприятии ОАО Алтайхимпром . Пути модерниза (стр. 7 из 9)

Незначительные габариты и вес шнекового дегидратора позволяют компактно разместить установку на очистных сооружениях.

Установка работает в автоматическом режиме и не требует постоянного присутствия обслуживающего персонала.

4.3 Использование высушенного осадка

Обезвоженный осадок сточных вод представляет собой ценный продукт для сельского хозяйства, потому что активный ил содержит большое количество азота и фосфорного ангидрида, меди, молибдена, цинка.

В качестве удобрения можно использовать те осадки избыточного активного ила, которые предварительно были подвергнуты обработке, гарантирующей последующую их незагниваемость, а также гибель патогенных микроорганизмов и яиц гельминтов (см. рис.11)

Рисунок 11 – Отношение объёмов обезвоженного и высушенного осадка

Высушенный осадок используют в качестве вспомогательного материала:

  • для засыпки мест выработки в горнодобывающей промышленности, для сооружения полигонов хранения отходов, в дорожном строительстве, для рекультивации почвы, для озеленения магистралей;
  • в производстве цемента, асфальта, керамики – как улучшающей строительные качества сырьевой компонент и как горючей материал для технологических процессов.

При сушке осадка сточных вод образуется горючей материал, который в зависимости от вида и состава осадка имеет теплоту сгорания от 9 до 13 МДж/кг, что соответствует 30-50% от этого показателя каменного угля и чуть ниже – древесины (см. таблицу №2).

Таблица №2 - Теплота сгорания различных материалов и выброс при этом

Вид топлива

Теплота сгорания, МДж/кг

Выброс

, т/т SKE*

Каменный уголь

24-30

2,7

Бурый уголь

7,5-15

3,3

Мазут

42,7

2,3

Природный газ

32-37

1,5

Древесина

14-16

-

Осадок(избыточный активный ил)

11-13

-

*SKE – энергетический эквивалент 1т каменного угля

Возможности термической переработки (сжигания) осадка:

  • моносжигание в специальных установках для термической утилизации осадка;
  • сжигание в качестве добавочного топлива на электростанциях или мусоросжигающих заводах;
  • пиролиз (газификация) для получения горючего газа;
  • использование в качестве топлива-заменителя.

В отличие от угля, нефти и других ископаемых энергии, при сжигании которых выделяется избыточное количество

, при сжигании биомасс, к которым также относится осадок, баланс
не нарушается. Таким образом, для цементных производств и электростанций сжигание высушенного осадка сточных вод выгодно, так как кроме экономии на угле, газе и нефтепродуктах это даёт снижение выбросов
.

Современные технологии обработки осадков сточных вод предусматривают не только их механическое обезвоживание, но и доработку осадков в органические удобрения.

В отечественной и мировой практике существуют различные технологические схемы обработки осадков, обеспечивающие стабилизацию, обеззараживание, снижение запаха и подготовку к дальнейшему использованию. Одной из таких схем является обезвоживание осадков с последующим компостированием с органосодержащими наполнителями в целях получения органического удобрения. Данный метод широко используется в европейских странах: в Финляндии компостируется до 80% осадка, в Чехии и Швеции – до 50%.

Указанный метод применяется и на очистных сооружениях г.Дубны производительностью около 30тыс.м3/сут.

Технологический процесс получения компоста включает следующие стадии:

· Обезвоживание смеси сырого осадка и избыточного активного ила на ленточных фильтр-прессах типа ЛФ-1500 П, установленных в комплекте со сгустителями (производительность оборудования – 20-25 м3/ч;

· Транспортирование обезвоженного осадка ленточным транспортёром к двухвалковому шнековому смесителю, установленному в цехе приготовления компостной массы;

· Завоз, хранение, классификацию, дозированную подачу опилок к смесителю;

· Смешивание осадка и опилок;

· Подачу компостной смеси в бункер и погрузку в самосвал;

· Вывоз компостной смеси на площадки компостирования, формирования буртов;

· Выдержку в буртах с периодическим перемешиванием до полного созревания компоста;

· Отгрузка потребителю.

В целях интенсификации процесса компостирования была предложена обработка компостной массы биопрепаратом Bioforce Compost.

Сертификационные и инспекционные испытания получаемого компоста в рамках «Системы обязательной сертификации по экологическим требованиям» показали, что по содержанию органических веществ и удобрительных макроэлементов он представляет собой высокоэффективное органическое удобрение (см. таблицу №3)

Таблица № 3 - Агрохимические показатели компоста

Массовая доля %
влаги 50 – 70
органических веществ 50 – 70
общего азота (N) 1,5 – 2,5
общего фосфора (Р2О5) 2,5 – 3,5
общего калия (К2О) 0,2 – 0,9

В состав компоста входят микроэлементы, необходимые для растений ( марганец, цинк, медь, бор), содержание тяжёлых металлов – ниже допустимых требований

ГОСТ РФ 17.4.3.07-2001 и СанПиН 2.1.7.573-96. По санитарным показателям и в радиологическом отношении компост безопасен. Полученный компост привлекателен по внешнему виду, не напоминает исходный осадок после обезвоживания, используется для посадки газонов, клумб, деревьев, кустарников. Дозы внесения соответствуют дозам традиционных органических удобрений.

5 Использование сточных вод в оборотной системе водоснабжения

5.1 Анализ водно-химического баланса предприятия ОАО «Алтайхимпром»

Анализ водно-химического баланса предприятия ОАО «Алтайхимпром» (см. данные по качеству сточных вод – приложение А) показывает возможность использования сточных вод после биологической очистки. Повторное использование воды снижает затраты на водоснабжение. Наличие оборотной системы водного хозяйства на ОАО «Алтайхимпром» является одним из важнейших показателей технического уровня промышленного предприятия. Внедрение схемы повторного использования воды (в настоящее время, повторное использование воды реализовано только на операции промывки песколовок на БОС) позволяет резко снизить количество сбрасываемых сточных вод и уменьшить потребление артезианской воды на подпитку схемы оборотного водоснабжения. Это даёт большой экономический и экологический эффект. Однако для эффективного функционирования оборотных систем необходимо решить проблемы коррозии, отложения солей в трубопроводах, микробиологических и других загрязнений оборотной воды.

Водоподготовка для систем оборотного водоснабжения состоит из удаления загрязнений обычными физико-химическими методами, добавок в воду биоцидов, ингибиторов коррозии и накипеобразования, корректировки рН. В отсутствии ингибиторов предельное содержание солей в оборотной воде не рекомендуется допускать выше 2г/дм3. Для умягчения воды могут быть использованы натрий-катионовые фильтры. Остаточная жёсткость умягчённой воды при одноступенчатой схеме натрий-катионирования ожидается не выше 0,2 мг-экв/л. Применение подпиточной воды такой жёсткости обеспечит надёжную эксплуатацию оборотных циклов водоснабжения ОАО «Алтайхимпром». Однако, если для подпитки оборотного водоснабжения использовать только хозбытовые сточные воды после биологической очистки, то вопрос необходимости умягчения воды следует рассмотреть дополнительно, но в любом случае, для повторного использования вод в оборотной системе ОАО «Алтайхимпром» следует решить вопрос обезвреживания сточных вод от микробиологического загрязнения.

5.2 Обеззараживание сточных вод ультрафиолетовым облучением

Вода, которая прошла полную биологическую очистку, как правило, должна подвергаться ультрафиолетовому обеззараживанию.

Обеззараживание сточных вод ультрафиолетовым облучением получило широкое распространение в последние 15 лет на промышленных предприятиях и предприятиях коммунального хозяйства.

Механизм бактериального воздействия ультрафиолетового (УФ) облучения основан на повреждениях нуклеиновых кислот микроорганизмов – ДНК и РНК. Максимальная эффективность инактивации наблюдается в диапазоне волн 250-270 нм, на этот участок приходится длина волны, генерируемая УФ-лампами низкого давления, – 254 нм.

Метод ультрафиолетового обеззараживания имеет следующие преимущества по отношению к окислительным обеззараживающим методам (хлорирование, озонирование):

  • УФ облучение летально для большинства водных бактерий, вирусов, спор и протозоа. Оно уничтожает возбудителей таких инфекционных болезней, как тиф, холера, дизентерия, вирусный гепатит, полиомиелит и др. Применение ультрафиолета позволяет добиться более эффективного обеззараживания, чем хлорирование, особенно в отношении вирусов;
  • обеззараживание ультрафиолетом происходит за счет фотохимических реакций внутри микроорганизмов, поэтому на его эффективность изменение характеристик воды оказывает намного меньшее влияние, чем при обеззараживании химическими реагентами. В частности, на воздействие ультрафиолетового излучения на микроорганизмы не влияют рН и температура воды;
  • в обработанной ультрафиолетовым излучением воде не обнаруживаются токсичные и мутагенные соединения, оказывающие негативное влияние на биоценоз водоемов;
  • в отличие от окислительных технологий в случае передозировки отсутствуют отрицательные эффекты. Это позволяет значительно упростить контроль за процессом обеззараживания и не проводить анализы на определение содержания в воде остаточной концентрации дезинфектанта;
  • время обеззараживания при УФ облучении составляет 1-10 секунд в проточном режиме, поэтому отсутствует необходимость в создании контактных емкостей;
  • достижения последних лет в светотехнике и электротехнике позволяют обеспечить высокую степень надежности УФ комплексов. Современные УФ лампы и пускорегулирующая аппаратура к ним выпускаются серийно, имеют высокий эксплуатационный ресурс;
  • для обеззараживания ультрафиолетовым излучением характерны более низкие, чем при хлорировании и, тем более, озонировании эксплуатационные расходы. Это связано со сравнительно небольшими затратами электроэнергии (в 3-5 раз меньшими, чем при озонировании); отсутствием потребности в дорогостоящих реагентах: жидком хлоре, гипохлорите натрия или кальция, а также отсутствием необходимости в реагентах для дехлорирования.
  • отсутствует необходимость создания складов токсичных хлорсодержащих реагентов, требующих соблюдения специальных мер технической и экологической безопасности, что повышает надежность систем водоснабжения и канализации в целом;
  • ультрафиолетовое оборудование компактно, требует минимальных площадей, его внедрение возможно в действующие технологические процессы очистных сооружений без их остановки, с минимальными объемами строительно-монтажных работ.

В последнее время наблюдается устойчивая тенденция увеличения объёма обработки сточных вод УФ-облучением.