Смекни!
smekni.com

Водовідводні системи промислових підприємств (стр. 4 из 4)

Рисунок 5.1 - Ізотерма сорбції

При збільшенні концентрації речовини в розчині, збільшується кількість адсорбованої речовини. Але на різних ділянках сорбційної ізотерми це не однаково.

В області низьких концентрацій кількість сорбованої речовини прямопропорційна концентрації йоніту (ділянка І рис. 5.1.)

При подальшому збільшенні концентрації кількість сорбованої речовини збільшується, але в меншій кількості (ділянка ІІ рис. 5.1.), і далі крива переходить в пряму, яка паралельна осі абсцис (ділянка ІІІ рис. 5.1.), що свідчить про поступове насичення поверхні йоніту.

В будь-якій точці побудованої ізотерми сорбції можна знайти величину питомої сорбції. Статичний метод визначення величини питомої сорбції заключається в знаходженні концентрації вихідного розчину (С0), потім струшують катіоніт масою m з розчином відомої концентрації на протязі деякого протягу часу, необхідного для встановлення сорбційної рівноваги. Визначають концентрацію речовини (С), яка залишилася не адсорбованою.

Питому сорбцію визначають за формулою:

, (5.1)

де V – об’єм розчину, л.

Для розрахунків існує декілька рівнянь, які описують ізотерму сорбції. Найбільш просте – рівняння Ленгмюра:

, (5.2)

де К, b – величини, які постійні для даної ізотерми;

С – концентрація речовини при досягненні рівноваги, моль/л.

Часто рівняння Ленгмюра не відповідає експериментально знайденим ізотермам сорбції, так як дуже спрощене.

Найбільш точно крива ізотерми сорбції (рис.5.1) описується рівнянням Фрейндліха:

, (5.3)

де α, k– сорбційні константи, які залежать від типу сорбента, концентрації сорбованої речовини, температури середовища, тривалості процесу і визначається експериментально у кожному конкретному випадку.

Визначивши вигляд ізотерми хемосорбції і відповідні коефіцієнти, можна розрахувати значення питомої сорбції речовини при будь-якій заданій рівноважній концентрації розчину та необхідну дозу іоніту для досягнення заданого ефекту видалення речовин з електролітів.

5.3 Реактиви, посуд та прилади

1. Смола КУ–2–8 в (Н+ - формі).

2. Смола КУ–1 (в Н+ - формі).

3. Розчин сульфату міді Cu SO4, з концентрацією 1 г/л (V = 100 мл).

4. Колби ємністю 250 мл – 10шт.

5. Дистильована вода (1л).

6. Піпетки, стакани.

7. Аналітичні терези.

8. Шпатель.

5.4 Методика експерименту та обробка результатів

В п’ять чистих колб ємністю 250 мл наливають по 100 мл розчину:

в першу – розчин з концентрацією Сu2+ 1, 0мг/л;

в другу – 5,0 мг/л;

в третю – 20 мг /л;

в четверту – 100мг/л;

в п’яту – 500мг/л.

Потім в кожну із колб висипають катіоніт КУ–2–8 масою 1г. Вмістиме колб перемішують на протязі 30 хвилин. По закінченню перемішування із розчинів відбирають проби і визначають концентрацію іонів Сu2+ в розчин (за методикою, описаною в [2] ).

Паралельно проводять аналогічний експеримент з використанням в якості катіоніта КУ–1 в Н+

формі.

Результати експериментів заносять до табл. 5.1.

Таблиця 5.1 - Результати сорбції Сu2+ катіонітами КУ–2–8 та КУ- 1.

Марка катіоніта Номер колби Вихідна концентрація Сu2+, С0, мг/л Рівноважна концентрація Сu2+, С, мг/л Вага катіоніта m, г
КУ-2-8 1
2
3
4
5
КУ-1 1
2
3
4
5

По даним табл. 5.1 розраховують кількість іонів Сu2+ в міліграмах, що сорбувалася на 1 г катіоні та за формулою (5.1)

На основі розрахункових даних будується ізотерма сорбції а = f (С). Перевіряється можливість описання ізотерми сорбції рівнянням Ленгмюра, для чого будують графік в координатах

-
(рис. 5.2)

1. Якщо точки попадають на пряму, то рівняння Ленгмюра можна застосувати.

Рисунок 5.2 - Ізотерма сорбції для рівняння Ленгмюра

2. Якщо точки на пряму не попадають, то ізотерма сорбції описується рівнянням Фрейндліха (5.2)

Прологарифмувавши рівняння (5.2), одержимо рівняння прямої в координатах lg a ­ lg С(рис. 5.3)

Рисунок 5.3 – Ізотерма сорбції за рівнянням Фрейндліха

5.5 Зміст звіту

В звіті зазначаються: назва та мета лабораторної роботи; схема лабораторної установки, описується методика експерименту та наводяться результати у вигляді таблиць та графіків. В кінці роботи пишеться висновок.

5.6 Контрольні запитання

1. Зміст методу йонного обміну.

2. Чинники, що впливають на процес йонного обміну.

3. Обґрунтуйте існування межі сорбції при збільшенні концентрації.

4. Класифікація йонітів за природою матриці. Навести приклади.

5. Види сорбції.

6. Катіоніти, аніоніти та амфоліти. Їх види. Навести приклади.

7. Рівняння Ленгмюра та ізотерма сорбції.

8. Рівняння Фрейндліха та ізотерма сорбції.

9.Як визначається рівноважна концентрація йонів міді у розчині.


ЛІТЕРАТУРА

1. СНиП 2.04.03-85. Строительные нормы и правила. Канализация. Наружные сети и сооружения. – М.: ЦИТП, 1986-72с.

2. Лурье Ю. Ю. Аналитическая химия промышленных сточных вод. – М.: Химия, 1984. – 448с.

3. Яковлев С. В., Карелин Я. А., Ласков Ю. Н., Воронов Ю. В. Водоотводящие системы промышленных предприятий. – М.: Стройиздат, 1990 ‑ 512с.

4. Калицун В. И., Ласков Ю. М., Воронов Ю. В., Алексеев Е. В. Лабораторный практикум по водоотведению и очистке сточных вод. – М.: Стройиздат, 2000 – 262с.